Tunnelbranden kunnen catastrofaal zijn in relatie tot mensenlevens en de tunnel zelf. Tijdige en accurate branddetectie is een elementaire voorwaarde om branden te kunnen beperken en te bestrijden. Marina Fragkopoulou, masterstudent aan de TU Delft en onderzoekstagiaire bij Deerns, onderzoekt de werking van state-of-the-artbrandmeldsystemen.

Door de toenemende stedelijke ontwikkeling en bevolkingsgroei, wordt verwacht dat de komende twintig tot dertig jaar snelwegen en andere infrastructuur een kritisch breekpunt bereiken ten aanzien van hun capaciteit. Dit resulteert in veel tunnelbouwprojecten in de komende tien tot vijftien jaar. Momenteel kent Europa al meer dan 15.000 kilometer aan operationele tunnels voor transport. Hoewel ongelukken door tunnelbranden minder vaak voorkomen dan ongevallen op open wegen, kan hun effect significant ernstiger zijn. Dit heeft te maken met de kritische basisfactoren van een tunnel:

  • Gesloten omgeving
  • Beperkte vluchtrichtingen
  • Noodzaak tot zelfredzaamheid
  • Menselijke factor

De menselijke factor is zeer moeilijk voorspelbaar. Om de zelfredzaamheid te verbeteren en mensen meer vluchttijd te geven, is het noodzakelijk branden vroegtijdig te detecteren.

Door een toenemende bewustzijn van de risico’s bij tunnelbranden, zijn er nieuwe veiligheidsmaatregelen en regelgevingen geïntroduceerd op nationaal en internationaal niveau. Veel Europese landen worden geconfronteerd met de verplichting tunnels te renoveren waar deze als ‘onveilig’ worden bestempeld. Renovatie kan voor stakeholders echter ongewenst en te kostbaar zijn. De studie van Marina richt zich daarom op alternatieve oplossingen om het gewenste veiligheidsniveau te bereiken.

Doel van het onderzoek

Initieel onderzoek wijst uit dat vroegtijdige branddetectie een van de meest belangrijke aspecten is van brandveiligheid in tunnels. Het doel van de studie is te verifiëren of meer geavanceerde technieken die een snelle reactietijd hebben een compromis kunnen zijn voor de huidige veiligheidseisen in de standaarden. Marina onderzoekt het effect van een technologisch geavanceerd systeem op de detectietijd en daarmee op het totale evacuatieproces.

Er worden drie type detectiesystemen onderzocht:

  • Lineaire hittedetectie (LHD): een continue hittedetectiekabel die over de volledige lengte van de tunnel hitte detecteert.
  • Meervoudige gasdetectie (MGD): sensoren die brandgerelateerde gassen detecteren in een vroege fase van de brandontwikkeling.
  • Gesloten-circuit camerasysteem (CCTV): de omgeving met camera’s in de gaten houden om brand te detecteren.

Marina heeft brandsimulatiesoftware (fire dynamics simulator, FDS) gebruikt om diverse scenario’s met branden te simuleren en de werking van elk branddetectiesysteem te onderzoeken. De FSD bevat standaard geen opties voor het modelleren van nieuwere warmte- en rookdetectiesystemen. De LHD moest bijvoorbeeld gemodelleerd worden als een rij met losse detectoren. Via leveranciers kon Marina de juiste parameters achterhalen, zoals de alarmdrempels. Met praktijktestresultaten heeft ze de modellen kunnen valideren.

De detectiesystemen worden getest op drie type brandhaarden. De omvang van de brand (heat release rate, in megawatt) volgt uit praktijkproeven:

  • Passagiersauto – 10MW
  • Bus – 30MW
  • Zwaar transportvoertuig -200MW

Simulaties van twee scenario’s: de rookontwikkeling bij een brandende auto (boven) en een brandende zware goederenvrachtwagen. (Beelden: Marina Fragkopoulou)

De brandhaarden worden gecombineerd met verschillende ventilatiecondities, windcondities en tunnelgeometrie. Dit is bijvoorbeeld van belang om te kunnen bepalen bij welke instellingen de detectoren geen vals alarm geven. In een afgesloten ruimte zoals een tunnel kunnen warmte en gassen van voertuigen al snel leiden tot hoge temperaturen en hoge concentraties van giftige stoffen, waardoor het alarm onterecht zou kunnen afgaan. De rol van het ventilatiesysteem is dan ook belangrijk om mee te nemen.

Resultaten

Testen met de branddetectoren hebben reeds interessante resultaten opgeleverd aangaande de reactie onder bepaalde condities. Zo lijken het type ventilatiesysteem en de luchtstroming inderdaad van grote invloed te zijn. Een sterke luchtstroming in de lengterichting van de tunnel heeft veel effect op warmtedetectoren die geactiveerd worden op basis van temperatuurstijging of een absolute temperatuurdrempel. Bovendien wijzen de resultaten erop dat de prestatie van een detector sterk afhangt van het brandscenario. Bij een autobrand lijkt detectie bijvoorbeeld minder effectief omdat de temperatuur langzaam stijgt, waardoor het systeem soms niet binnen drie minuten reageert: de reactiesnelheid die minimaal noodzakelijk is om het gewenste veiligheidsniveau te bereiken. Aan de andere kant is MGD bij dit scenario juist wel effectief. Hiermee kan brand vaak al binnen twee minuten gedetecteerd worden.

Het onderzoek leidt tot een gevalideerd model dat diepgaand inzicht geeft in de werking en prestaties van detectiesystemen onder invloed van externe factoren. De opzet van de studie maakt het mogelijk om meer brandscenario’s en nieuwe detectietechnologieën te onderzoeken met gevalideerde simulaties. Tunnelontwerpers kunnen op basis hiervan prestatiegerichte keuzes maken ten aanzien van de veiligheid, zoals voor het branddetectiesysteem, de interactie tussen de detectoren en het ventilatiesysteem, de verwachtte reactietijd en de impact op het evacuatieproces. Zo wordt duidelijk welke inrichting best passend is bij een brandscenario.