Loading...

De Onderbreking

Duurzaamheid

Duurzaamheid

DBFM contract tweede coentunnel

Den Haag Rotterdamsebaan

Kennis van de ondergrond sijpelt provincie in

Drenthe presenteert Structuurvisie Ondergrond 2.0

Risicogestuurd grondonderzoek

Warmterotonde is duurzaam en rendabel

Den Haag, Tramtunnel

Nieuwe kennis naar de praktijk

In focus: ruimte voor duurzaamheid

Kennisbank

Duurzaamheid

Van een ondergrondse constructie die iets kost, naar een ondergrondse constructie die iets oplevert. Dat is in een notendop wat het COB voor ogen heeft bij het thema Duurzaamheid. Het inspiratiedocument Duurzaamheid (juni 2014) biedt een kader dat om verdere uitwerking in de praktijk vraagt. De Rotterdamsebaan was de eerste, wie neemt het stokje over? Hoe gaan we iedere tunnel in Nederland een beetje duurzamer maken?

Het veranderende energielandschap is binnen duurzaamheid een belangrijk element. Het gebruik van duurzame energievormen neemt toe, wat ook gevolgen heeft voor het gebruik van de ondergrond. Participanten van het COB spelen een rol in de transitie naar een duurzame omgeving. Het COB ziet het dan ook als taak om bij te dragen aan kennisontwikkeling op dit gebied. Wat zijn de kansen en risico’s?

'De businesscase is gebaseerd op beschikbaarheidsafspraken'

Binnenkort wordt de Tweede Coentunnel opgeleverd. Dan zal blijken of de DBFM-constructie, die erop neerkomt dat Rijkswaterstaat de tunnel voor 24 jaar leaset, aan de verwachtingen voldoet. Gerard Minten, CEO van de Coentunnel Company: “Het DBFM-concept is goed als je exact weet wat je gaat doen. De investeerders willen weten waar ze aan toe zijn en eisen duidelijkheid.”

De financiële component in de contractvorm vergt een specifieke aanpak. Gerard Minten vervolgt over de noodzaak om investeerders vooraf zo nauwkeurig mogelijk te kunnen vertellen wat het project behelst: “Natuurlijk is het zo dat je ondergronds altijd met onvoorspelbare componenten te maken hebt, maar dat kun je inpassen. Wat je niet kunt doen, is onderweg de spelregels veranderen.”

Een volledig voorspelbaar project leidt tot de vooronderstelling dat DBFM tot optimalisatie en lagere kosten leidt. De eindafrekening kan uiteraard pas over vierentwintig jaar worden gemaakt, maar Gerard Minten noemt al wel de verschillende invloedsfactoren: “De financieringskosten zijn juist hoger, omdat je als marktpartij nooit kunt lenen tegen het rentepercentage dat de overheid krijgt. Daar staat het voordeel tegenover dat de aannemer kan optimaliseren. Die twee aspecten kun je niet zomaar salderen. Verder geeft de financieringscomponent een heel andere dimensie aan een project als de Tweede Coentunnel. De financiers steken er vijf jaar lang geld in, voordat de geldstroom vanuit Rijkswaterstaat gaat lopen. Dat is een belangrijk drukmiddel voor tijdig opleveren. Daarnaast volgt optimalisatie uit de afspraak om te betalen op basis van beschikbaarheid.”

“In het contract zijn boetes opgenomen voor wegafsluitingen, falen van technische systemen en dergelijke. Daarbij hoeft overigens geen sprake te zijn van fysieke afsluiting. Ook ‘virtueel dicht’ kan leiden tot boetes. De beschikbaarheidsafspraken leiden tot het eventueel dubbel uitvoeren van systemen en een sterke focus op kwaliteit van materialen voor de lange termijn. Daar is de businesscase op gebaseerd. De onderaannemer neemt het risico dat hij bouwt voor een vast bedrag. De Special Purpose Company (zie kader) is zoveel mogelijk risicovrij.”

Kwalitatief rendement

Een tweede vooronderstelling is dat de DBFM-aanpak innovatie voedt en leidt tot slimme oplossingen. Dat zet de deelnemende aannemer op voorsprong, omdat hij dergelijke innovaties elders weer toe kan passen. De praktijk blijkt weerbarstiger. Gerard Minten: “Een groot deel van bijvoorbeeld de Tunnelstandaard is gelijktijdig met de bouw van de Coentunnel ontwikkeld. We hebben tijd en ruimte gekregen om zaken samen met Rijlswaterstaat uit te zoeken. Toch blijkt het blijven voldoen aan de contractuele verplichtingen een zwaardere stempel te drukken op innovaties dan de mogelijke verbetering van de concurrentiepositie van deelnemende partijen.”

Slimme oplossingen als gevolg van de DBFM-aanpak doen zich wel degelijk voor. Gerard Minten: “Het denken vanuit zo min mogelijk afsluitingen leidt tot verbeteringen. Zo zijn de tunneltechnische installaties (TTI’s) bij de Tweede Coentunnel geconcentreerd op een aantal goed bereikbare plekken in het middentunnelkanaal en is ledverlichting toegepast om onderhoud te beperken. Ook buiten de tunnel zijn de verkeerstechnische installaties geconcentreerd in de VTI-huisjes langs de weg. Daardoor is slimmer onderhoud mogelijk. Het zijn optimalisaties die nog tijdens het bouwproces zijn doorgevoerd, omdat duidelijk werd dat je het risico op afsluitingen verkleint.”

De verkeerstechnische installaties zijn geconcentreerd in VTI-huisjes langs de weg. (Foto: Coentunnel Company)

Juridificering

De financiële component verhoogt risico’s en daarmee de noodzaak om die risico’s zo veel mogelijk af te dekken. Een DBFM-contract leidt dan ook tot hogere juridische kosten. Gerard Minten geeft aan dat de transactiekosten ongeveer drie procent van de investering bedragen, het dubbele van een contract zonder F-component. “In ons consortium-businessmodel houden we daar rekening mee. Bij consortiumpartner Vinci hebben we bijvoorbeeld een grote concessietak die met tientallen projecten wereldwijd al heel veel ervaring heeft met deze werkwijze. Vanwege dat hoge percentage transactiekosten zijn projecten van 500 miljoen euro voor Vinci zo’n beetje de ondergrens.”

Aannemers

Alhoewel er ook de kritiek is dat DBFM-contracten de keuzevrijheid voor de besteding van overheidsgeld in de toekomst te veel zouden beperken, wordt algemeen aangenomen dat er meer met DBFM-contracten gewerkt zal worden. Reden voor de aannemers van ons consortium om vroeg in te stappen, ervaring op te doen en ervoor te zorgen dat zij een DBFM-project aan hun trackrecord kunnen toevoegen.

Gerard Minten: “De meeste aannemers zullen aangeven dat een DBFM-contract op lange termijn interessant is, omdat je ook het onderhoud hebt. De vraag is wel of alle partijen onderkend hebben waar zij aan begonnen. Het voordeel zit in de herhaling. Je moet vaker DBFM-projecten doen om er voordeel uit te halen. Voor de toekomst verwacht ik een splitsing. Er zal een groep zijn die voor de lange termijn gaat en gelooft in dit concept. Dat zijn de bedrijven die hun organisatie eromheen opbouwen op basis van schaalvoordelen.”

Open!

Inmiddels is de Tweede Coentunnel open voor verkeer. Agmi, ontwerper en installateur van onder meer de (led)verlichting, maakte een leuke video over de aanleg:

https://youtu.be/A5HcXQfd6-0

>> Lees het nieuwsbericht over de nieuwe Tweede Coentunnel

Rotterdamsebaan

De gemeente Den Haag werkt aan een nieuwe verbindingsweg tussen knooppunt Ypenburg (A4/A13) en de Centrumring: de Rotterdamsebaan. Deze weg wordt 3,8 kilometer lang en doorkruist het grondgebied van de gemeenten Leidschendam-Voorburg, Rijswijk en Den Haag. Onderdeel is een geboorde tunnel, de Victory Boogie Woogietunnel, die tweemaal twee rijstroken krijgt en ongeveer 1.860 meter lang wordt.

De Utrechtsebaan is de belangrijkste toegangsweg van Den Haag. Van het verkeer dat de stad dagelijks in- en uitgaat, rijdt veertig procent via deze weg. Dat leidt elke dag tot files die zich vaak uitbreiden naar de omringende snelwegen zoals de A12, A13 en A4. De aangrenzende woonwijken hebben veel last van sluipverkeer. De nieuwe Rotterdamsebaan zorgt ervoor dat de druk op de Utrechtsebaan afneemt en het verkeer zich beter verdeelt. Met de nieuwe weg krijgt het verkeer van en naar Rotterdam, Delft en Ypenburg een alternatief.

Tracé

De Rotterdamsebaan loopt van het knooppunt Ypenburg richting het noorden, kruist met een tunnel het groene gebied de Vlietzone, het water de Vliet en de woonwijk Voorburg-West en komt uit op de Binckhorstlaan. Daar sluit de nieuwe weg bij de Neherkade direct aan op de Centrumring. Het tracé komt grotendeels overeen met de ligging van de tweede toegangsweg die architect Dudok – die na de Tweede Wereldoorlog de leiding had over de wederopbouw van Den Haag – in zijn plannen had opgenomen. De inpassing van de nieuwe verbindingsweg was een complexe opgave. Uiteindelijk heeft de inspraakprocedure ertoe geleid dat het ondergrondse deel van het tracé driehonderd meter langer wordt dan technisch gezien noodzakelijk is. Met de verlenging is de gemeente tegemoetgekomen aan bezwaren van omwonenden en andere belanghebbenden.

Artist impression van de skyline vanuit de Vlietzone. Op het dak van de tunnel zijn de geplande zonnepanelen te zien. (Beeld: Rotterdamsebaan)

Victory Boogie Woogietunnel

De tunnel, die Victory Boogie Woogietunnel gaat heten, wordt geboord. Hiervoor maakt de aannemerscombinatie (zie rechts) gebruik van de tunnelboormachine waarmee eerder de Sluiskiltunnel is aangelegd. De tunnel wordt 1.860 meter lang, waarbij het geboorde deel een lengte heeft van circa 1.640 meter. De twee tunnelbuizen komen op ongeveer vier meter van elkaar te liggen, krijgen een diameter van ruim tien meter en liggen op het diepste punt 29 meter onder de grond. In iedere buis komen twee rijstroken en tussen de buizen komt om de 250 meter een dwarsverbinding.

Duurzame infrastructuur

De Rotterdamsebaan moet hét voorbeeld van duurzame infrastructuur in Nederland worden. De Combinatie Rotterdamsebaan heeft in het ontwerp veel aandacht besteed aan de verschillende duurzaamheidsaspecten, zoals vormgeving en inpassing in het landschap, luchtkwaliteit en energiegebruik. Een goed voorbeeld is de tunnelmond in de Vlietzone. Hier komt over het dienstgebouw en de tunnelmond een grote overkapping die bestaat uit zonnepanelen. De elektriciteit die hiermee wordt opgewekt, zal worden gebruikt in het dienstgebouw. Een ander voorbeeld is het fine dust reduction system, een systeem waarmee vijftig procent van het fijnstof bij de tunnelmonden wordt afgevangen.

Planning

In 2014 is de gemeente gestart met het bouwrijp maken van het tracé en in 2015 is een aantal wegen in de Binckhorst opnieuw ingericht. Eind 2015 is de aanbesteding afgerond en is de opdracht, in de vorm van een design-, built- en maintenancecontract met vijftien jaar onderhoud, gegund aan de Combinatie Rotterdamsebaan. In 2016 heeft de gemeente de laatste voorbereidende werkzaamheden afgerond, waarna de aannemerscombinatie van start kon met het inrichten van de werkterreinen in de Vlietzone, de Binckhorst en het knooppunt Ypenburg.

Het boren van de Victory Boogie Woogietunnel startte half januari 2018. Vanuit de startschacht op het werkterrein in de Vlietzone graaft tunnelboormachine Catharina-Amalia haar weg naar de Binckhorst. Naar verwachting komt ze daar in juni 2018 aan. Vervolgens wordt de machine gedemonteerd en teruggebracht naar de Vlietzone. Nadat de machine weer is opgebouwd, start het boren van de tweede tunnelbuis. De opening van de Rotterdamsebaan staat gepland voor 1 juli 2020.

Voorbereiding

Om onder de grond alvast ruimte te maken voor de tunnel van de Rotterdamsebaan, moesten grote stroomkabels verlegd worden. De gemeente Den Haag maakte een video over deze indrukwekkende klus. Over een afstand van liefst een kilometer werd tot vijfendertig meter diep onder de grond een gestuurde boring uitgevoerd.

Kennis van de ondergrond sijpelt steeds dieper de provincie in

De twaalf provincies in Nederland maken steeds meer werk van de ondergrond. In 2012 hebben zij samen met andere partners de Innovatie- en Kennisagenda bodem en ondergrond (IKBO) opgesteld. Het doel is daarmee de bijdrage vanuit bodem en ondergrond aan de maatschappelijke opgaven, zoals mobiliteit, landschap, leefomgevingskwaliteit, gezondheid, energievoorziening en veiligheid te versterken .

“Sinds 2012 zijn de provincies al een heel eind gevorderd in hun visieontwikkeling op de ondergrond”, vertelt Astrid Slegers, voorzitter van de beleidsgroep Duurzame Ondergrond (DOG) van het Interprovinciaal Overleg (IPO). “De overall kennisagenda is een optelsom van ambities. Nadat er een prijskaartje aan werd gekoppeld moesten we keuzes maken. We zitten immers in een situatie waarin organisaties afslanken en er minder budget beschikbaar is. Kennisontwikkeling is dan vaak één van de laatste postjes. Maar tegelijkertijd zien we de urgentie van bijvoorbeeld de aardbevingen in Groningen. Of die van de naweeën van het gebruik van de ondergrond voor mijnbouw in Limburg. De verdiensten van de mijnen zijn uiteraard allang vervlogen. Daar kun je geen beroep meer op doen. We weten dus dat we de benodigde financiering van kennisprogramma’s niet vandaag of morgen kunnen oplossen. Maar we moeten wel verder vooruitkijken. In een bredere context kijken naar wat het gebruik van de ondergrond betekent voor de toekomst.”

Keuzes maken

“We bevinden ons nu in de fase waarin we inventariseren welke onderzoeken we willen starten. Waar is de noodzaak het hoogst? Waar komen we echt kennis tekort? Daarbij zullen we wellicht wat verder kijken dan Nederland. Daarnaast zijn er aanknopingspunten bij bijvoorbeeld de klimaatdoelstelling. Duidelijk is dat onderzoek kapitaalintensief is en jaren duurt. We hebben echt een lange adem nodig.”

“Gelukkig is er al heel veel kennis. In het bij elkaar brengen van die kennis en het interpreteren ervan kunnen we nog een reuzenslag maken. Dat geldt overigens niet alleen voor de provincies. Dit is een opgave voor iedereen die in een gebied ambities heeft. Dus ook waterschappen, gemeenten en marktpartijen. Want als je wilt bouwen of ingrijpen in de waterhuishouding, heb je nu eenmaal rekening te houden met de ondergrond. We moeten dit echt gemeenschappelijk oppakken. Dat gebeurt overigens al steeds meer. Er wordt meer aan de voorkant nagedacht. Dat is nog niet genoeg, maar anticiperen op de ondergrond wordt wel al veel vaker dan voorheen als noodzaak gezien. De komende tijd zullen we dat gaan terugzien in concrete businesscases. In de tussentijd blijven wij aangeven dat de ondergrond belangrijk is, en blijven wij aandacht vragen voor de ondergrond.”

Provinciale visies

“We houden de ondergrond levend via de werkgroep DOG en van daaruit binnen de provincies zelf. In de kennisagenda zie je terug wat voor de bodem en de ondergrond de belangrijkste opgaven zijn en waarvoor de provincies aan de lat staan. De visieontwikkeling binnen provincies op basis daarvan is al ver, alhoewel er zeker ook verschillen zijn. In de ene provincie zie je een echte ondergrondvisie; in de andere is het een omgevingsvisie waarin aspecten van de ondergrond zijn meegenomen. De vorm is minder belangrijk. Waar het om gaat, is dat je als provincie keuzes kunt maken. Je schetst aan de voorkant een redelijk totaalbeeld, brengt stakeholders in kaart, inventariseert de belangen en maakt vervolgens keuzes op basis van de eigen bestuurlijke ambitie, bijvoorbeeld op het gebied van klimaat, mobiliteit of werkgelegenheid. Concrete projecten kunnen vervolgens bottom-up worden uitgevoerd op basis van de centrale visie op de ondergrond, waarbij de provincies in hun regio de verbindende rol spelen.”

“In ons proces hebben we baat bij het opstellen van de Structuurvisie Ondergrond (STRONG). Het is om te beginnen een mooi instrument. Een groot voordeel zit in het proces. Onderwerpen met betrekking tot de ondergrond krijgen aandacht. Er mag over gediscussieerd worden. Met andere woorden: de bestuurlijke aandacht leidt tot discussie en helpt overheidspartijen om het gesprek aan te gaan met de markt en aan te sluiten op initiatieven die daar ontwikkeld worden.”

“Het besef groeit dat overheden het niet in hun eentje kunnen oplossen. En daarmee het besef dat je samen aan oplossingen moet werken, dat je ruimte moet krijgen om fouten te mogen maken, en dat er een vangnet moet zijn. Met een schil van partijen met andere, aanvullende expertise kun je vervolgens ervaring opbouwen. Een voorbeeld hiervan is het onderzoek dat het COB in kader van het programma Bodem en ondergrond wil uitvoeren naar onbekende baten van de ondergrond. Vanuit governance is dit hetzelfde vraagstuk als waar we met DOG mee bezig zijn. We sluiten hier goed op elkaar aan in het aanpakken van een grote opgave van de overheid.”

Drenthe presenteert Structuurvisie Ondergrond 2.0

Provincie Drenthe wil het beleid voor de ondergrond actualiseren. In de concept-Structuurvisie Ondergrond 2.0 zijn de uitgangspunten voor mogelijke functies in de bodem aangevuld met nieuwe gegevens, gebruiksfuncties en een effectentoets.

14 februari 2013

In 2010 was Drenthe de eerste provincie die een structuurvisie voor de ondergrond opstelde. Het doel was ervoor te zorgen dat duurzaam gebruik van de ondergrond zorgvuldig wordt afgewogen. Hoewel deze eerste structuurvisie voor de lange termijn is gemaakt, zag gedeputeerde Tanja Klip-Martin voldoende reden voor een versie 2.0: “Het Rijk heeft naar Drents voorbeeld ook een Structuurvisie Ondergrond opgesteld. Dat leverde nieuwe informatie en kaartmateriaal op. Bovendien kregen innovatieve gebruiksfuncties de afgelopen twee jaar voor het eerst aandacht, zoals ondiepe en ultradiepe geothermie, hoge temperatuuropslag en de winning van bijvoorbeeld schaliegas.”

‘De Drentse ondergrond kent vele gebruiksmogelijkheden, waarbij er een sterke wisselwerking bestaat tussen de ontwikkelingen in de fysieke leefomgeving en de inrichting/het gebruik van de ondergrondse ruimte’, staat te lezen in de structuurvisie. (Foto: Flickr)

De Structuurvisie Ondergrond 2.0 bevat dezelfde uitgangspunten voor mogelijke functies in de bodem (zoals zoutkoepels, WKO, geothermie, gaswinning en opslag van CO2) als zijn voorganger uit 2010. In de 2.0-versie zijn nieuwe gegevens, gebruiksfuncties en een effectentoets toegevoegd. De Structuurvisie Ondergrond moet het duurzame gebruik van de ondergrond zodanig structureren dat een optimale afstemming ontstaat tussen de omgevingskwaliteit en het gebruik van de kansen die de ondergrond biedt als bijdrage aan klimaatdoelstellingen, maximalisatie van (duurzame) energievoorziening en beperken van belasting leefomgeving door gebruik van de ondergrond.

De concept-Structuurvisie Ondergrond 2.0 en de bijbehorende Milieutoets liggen gedurende zes weken ter inzage, van 21 februari tot en met 3 april 2013.

'Risicogestuurd grondonderzoek' bruikbaar wapen in strijd tegen faalkosten

Begin 2013 verschijnt het rapport Risicogestuurd grondonderzoek. Dit rapport is door een grote groep geotechnici vanuit Geo-Impuls opgezet om faalkosten te verminderen. (Het ontbreken van) de benodigde informatie over de ondergrond blijkt een belangrijke factor bij het optreden van faalkosten.

Het risico van faalkosten ontstaat juist dan wanneer verkeerde ontwerpbeslissingen of inschattingen worden gemaakt doordat op dat moment de benodigde informatie uit grondonderzoek ontbreekt. De publicatie helpt partijen die risico’s beter te beheersen en om in de contractvorming tot een daarbij passende toedeling van verantwoordelijkheden te komen. In de praktijk zijn er legio voorbeelden waarbij pas in een laat stadium werd ontdekt dat er sprake was van een verhoogd risicoprofiel. Zo zou het risico van herstel- en gevolgschade als gevolg van verzakkingen kunnen worden beperkt, doordat benodigde informatie als gevolg van het werken met het ontwikkelde instrument tijdig beschikbaar is.

De publicatie past in Geo-Impuls, het programma dat in 2015 moet leiden tot vijftig procent reductie van geotechnisch falen. De publicatie Risicogestuurd grondonderzoek is een vervolg op het Delft Cluster/CUR-project Grondonderzoek in de tenderfase. Martijn van Vliet, namens Rijkswaterstaat trekker van de werkgroep die de uiteindelijke publicatie ontwikkelde: “We zijn bewust van die oude naam afgestapt, omdat de nadruk op de tenderfase te beperkt zou zijn. Vanuit Geo-Impuls was er behoefte om het onderzoek breder en uitgebreider op te pakken, omdat we zagen dat er in de contractvorming steeds vaker een spanningsveld ontstaat ten aanzien van risico’s en verantwoordelijkheden. Welk onderzoek hoort bij het voorwerk van de opdrachtgever en wat hoort bij het werk van de aannemer? Dat probleem speelt bij elke contractvorm.”

“Wat wij met dit rapport willen benadrukken, is dat er in elke fase van een project grondonderzoek nodig is en dat je de uitkomsten steeds naar de volgende fase moet overdragen. Zo werk je van grof naar fijn, waarbij de onzekerheidsfactor steeds kleiner wordt. Je werkt van de eerste fase (is een tunnel hier überhaupt mogelijk?) tot de uitvoering (hoeveel kracht is er nodig om de damwand te installeren ?).”

Praktisch toepasbaar
De commissie is erin geslaagd om een praktisch instrument af te leveren. De inleiding van het rapport is gewijd aan de systematiek en daarmee voor alle lezers van belang. In de hoofdstukken erna is echter gekozen voor een indeling naar type bouwwerk/kunstwerk. Daarmee sluit de commissie aan bij de beleving en de werkwijze in de praktijk van alledag. Martijn van Vliet: “De publicatie is toegankelijk voor de gebruiker die vaak met één type project tegelijk bezig is. Per type bouwwerk/kunstwerk hebben we benoemd wat de risico’s zijn. De risicogestuurde aanpak betekent dat we omschrijven wat er moet gebeuren om zo’n risico te beheersen en hoe je je bevindingen zo documenteert dat men er in de volgende fase mee verder kan. De opdeling naar bouwwerk/kunstwerk betekent dat iedereen het voor hem relevante hoofdstukje erbij kan zoeken.”

De commissie heeft in de totstandkoming van het rapport steeds gewerkt aan een breed draagvlak. De commissie bestond weliswaar voornamelijk uit mensen met een technische achtergrond, maar er zijn binnen Geo-Impuls ‘onderweg’ workshops georganiseerd om mensen die met aanbestedingen bezig zijn bij de ontwikkeling van het instrument te betrekken.”Risicogestuurd werken betekent dus juist niet dat er dwingende voorschriften zijn als ‘Gij zult elke tien meter een prikje doen’. Het gaat erom dat er in een vroeg stadium wordt nagedacht over de geotechnische risico’s en dat het onderzoek wordt aangepast op basis van de werkelijke projectrisico’s.

Geo-Impuls
Het doel van Geo-Impuls is om vijftig procent reductie van faalkosten als gevolg van  geotechnisch falen te bewerkstelligen. Martijn van Vliet: “We hebben andere Geo-Impulsteams, die allemaal op een andere manier aan faalkostenbeperking werken,  bij dit project kunnen betrekken. Het is juist de Geo-Impulsomgeving die dit verder heeft kunnen brengen dan mogelijk was binnen de oude CUR-werkgroep. De andere setting heeft letterlijk een impuls gegeven. Het toepassen van georisicomanagement (GeoRM) is één van de belangrijkste producten van de Geo-Impuls.  Het resultaat is een handreiking aan partijen om beter met de risico’s te kunnen omgaan. Voorwaarde voor het slagen van deze aanpak is eigenlijk alleen dat je met z’n allen vooraf afspreekt dat je met de voorgestelde systematiek gaat werken.”

Martijn van Vliet is overtuigd van de praktische toepasbaarheid van de publicatie. ‘Het is geheel gebaseerd op bestaande kennis. Alleen de methodiek is nieuw. Het onderzoek dat we per bouwwerk/kunstwerk per fase aanbevelen, is gebaseerd op best practices. De gedachte daarachter is dat je wel allerlei hightechzaken kunt voorstellen, maar dat daar weinig van terechtkomt als het niet past in de praktijk. Het gaat er kortweg om dat je met dit rapport gemakkelijker kunt besluiten welk onderzoek nodig is.”

Warmterotonde is duurzaam én rendabel

Duurzame warmte voor driehonderdvijftigduizend woningen en duizend hectare glastuinbouw in Zuid-Holland, door benutting van vooral restwarmte uit de haven van Rotterdam. Deze aanpak levert een miljoen ton minder CO2-uitstoot en vijf procent minder stikstofdepositie op. Vijfentwintig publieke en private partijen geven invulling aan de Green Deal: het warmteverbruik binnen de provincie met veertien procent verduurzamen.

De komende jaren moet een warmtenet ontstaan dat warmteoverschot en warmtevraag in de provincie bij elkaar brengt. Een maatschappelijke kosten-batenanalyse heeft uitgewezen dat de kosten voor deze Warmterotonde over vijftig jaar vierenhalf miljard bedragen en dat het project gedurende de levensduur ongeveer zeven miljard euro zal opleveren. De Warmterotonde in de provincie Zuid-Holland zal zich uiteindelijk uitstrekken van Rotterdam tot Leiden en van Den Haag tot Dordrecht. De Rotterdamse warmtewegen ‘over zuid’ en ‘over noord’ zijn er al. Rotterdam-Westland/Den Haag en Rotterdam-Leiden zijn in voorbereiding.

In Zuid-Holland liggen warmteoverschot (Rotterdamse haven) en -vraag (Westland) dicht bij elkaar. Daarmee is de basis voor een rendabel warmtenet gelegd. Maar op termijn is veel meer mogelijk. Warmte is een duurzame energiebron en kan van verschillende bronnen afkomstig zijn. In de industrie en bij de productie van elektriciteit komt veel warmte vrij. Daarnaast kan warmte uit diepere aardlagen worden gewonnen en kan gebruik worden gemaakt van warmte die vrijkomt bij het verbranden van biogassen.

Bekijk ook de animatie op YouTube waarin het concept wordt uitgelegd. (Beeld: Programmabureau Warmte Koude Zuid-Holland)

Tracéstudie

Het initiatief zal de komende jaren concreet vorm krijgen. Er is een tracéstudie in voorbereiding en het Warmtebedrijf Rotterdam en Nuon onderzoeken de mogelijkheid om woningen in Leiden aan te sluiten. De gemeenten Rotterdam en Leiden hopen hiervoor begin 2015 een intentieovereenkomst over af te sluiten. Eind 2015 zal in het Westland een zogeheten Triasproefboring worden uitgevoerd. Dit wordt de eerste boring naar aardwarmte op vier kilometer diepte. Voorstudies hebben uitgewezen dat het Triasreservoir in potentie in circa tachtig procent van de Westlandse warmtevraag kan voorzien. Aansluiting op de Warmterotonde kan extra kansen bieden.

Overzichtskaart Warmterotonde. (Beeld: Programmabureau Warmte Koude Zuid-Holland)

Maya van der Steenhoven, directeur van het Programmabureau Warmte Koude Zuid-Holland: “De Warmterotonde biedt een innovatieve en flexibele manier om het warmtegebruik in de provincie met het oog op de toekomst te verduurzamen. Kern is dat we heel goed kijken wat de meest slimme manier is. Vooropstaat dat we het niet doen zoals we het altijd deden.”

“In 2011 is er een Green Deal gesloten tussen de ministeries van Binnenlandse Zaken en Koninkrijksrelaties ( BZK) en Economische Zaken (EZ), en de provincie Zuid-Holland om het warmteverbruik binnen de provincie met gebruik van restwarmte te verduurzamen met veertien procent. Om restwarmte te kunnen gebruiken heb je verbindingen nodig. Deels lagen die er al; andere worden nog aangelegd. Daarbij is het in feite niet relevant of die verbindingen allemaal op elkaar zijn aangesloten. Het gaat erom dat je integraal bekijkt wat je warmtevraag is, en dat ten opzichte van de beschikbare restwarmte optimaliseert.”

Maatschappelijke kosten-batenanalyse

“Uit de maatschappelijke kosten-batenanalyse (MKBA) blijkt dat het best slim is om te verduurzamen op basis van wat voorhanden is. Ik heb onderzoeksbureaus CE Delft en Infinitus opdracht gegeven een MKBA te maken naar aanleiding van de discussie die werd gevoerd over de noodzaak. Er werd geredeneerd dat we voor nog maar tien jaar warmte nodig zouden hebben, omdat we tegen die tijd met allerlei maatregelen het energie-nul-niveau zouden hebben bereikt. Voor mijn gevoel klopte dat niet. Als je kijkt naar de uitdagingen waar we voor staan, moet je constateren dat de warmtevraag nog voor een langere tijd zal bestaan. Daarom is het dus best slim warmtegebruik te verduurzamen. We moeten kijken wat de meest verstandige manier is om de transitie in te zetten.”

“In een situatie waar we in de Rotterdamse haven voor drie kolencentrales aan warmte het water of de lucht in gooien en we aan de andere kant een glastuinbouwsector hebben die voor drie kolencentrales aan warmte vraagt, is het evident dat je het een gebruikt voor het ander. Als dat de eerste stap van je verduurzaming is, is dat hartstikke slim. Daarna moet je natuurlijk wel doorgaan. Bijvoorbeeld door andere bronnen aan te sluiten en steeds meer aardwarmte te gebruiken. Uit de MKBA is gebleken dat de warmterotonde een ‘no-brainer’ is. Warmteverduurzaming door middel van restwarmtegebruik is heel efficiënt en heel effectief. Alle andere dingen moet je ook doen, maar we hebben niet de luxe dat we daarop kunnen wachten. We hebben net één waterdruppeltje in de zee verduurzaamd. We hebben de hele zee nog te gaan. Dus moet je alles wat mogelijk is, gebruiken.”

Tramtunnel

In 1996 begon de bouw van het Souterrain in Den Haag, een 1.250 meter lange tramtunnel onder de Grote Marktstraat met twee ondergrondse stations en tussen deze stations een 600 meter lange ondergrondse parkeergarage met twee parkeerlagen.

Volgens de planning zou het project voor het jaar 2000 gereed zijn, maar door grondwaterproblemen kwam het project ruim twee jaar stil te liggen en moest voor de afbouw gebruik worden gemaakt van een speciale bouwtechniek. Uiteindelijk werd de tunnel in 2004 in gebruik genomen. Sindsdien wordt hij gebruikt voor diverse tramlijnen en inmiddels ook door RandstadRail.

Tot de bouw van de tunnel werd besloten om het bovengrondse winkelgebied leefbaar en goed bereikbaar te houden. Dat is ondanks de problemen tijdens de bouw uitstekend gelukt. De drukke Grote Marktstraat is veranderd in een rustige, chique winkelpromenade en de ruim dertig trams per uur vervoeren dagelijks duizenden bezoekers naar en van de ondergrondse stations Spui en Grote Markt.

De Haagse tramtunnel, ook wel het Souterrain genoemd. (Foto: Flickr/Marco Raaphorst)

Bouwmethode

De tunnel is gebouwd volgens de wanden-dakmethode om overlast op maaiveld zoveel mogelijk te voorkomen. De wanden bestaan voor het grootste deel uit diepwanden en alleen ter plaatse van de Kalverstraat uit stalen damwanden. Op de meeste plaatsen staan de wanden zeer dicht op de bestaande bebouwing, die voornamelijk op staal is gefundeerd.

Over het grootste deel van het tracé bedraagt de afstand tussen de wanden ongeveer 15 meter, alleen ter plaatse van de stations staan ze circa 25 meter uit elkaar. Op de plekken waar de tunnel 15 meter breed is, is de bouwput aan de onderzijde voorzien van een groutboog, die bestaat uit korte elkaar overlappende jetgroutkolommen in de vorm van een afgevlakte ‘U’. De jetgroutboog is aangebracht om het grondwater tegen te houden en om de verticale kracht op de bouwputbodem door de opwaartse waterdruk naar de wanden te leiden. Verder functioneerde de boog tijdens de bouw als stempel voor de wanden. Hiervoor was het nodig dat de boog zo hoog mogelijk in de grond zat, zodat de stempelfunctie optimaal was en de wanden zo min mogelijk zouden vervormen. Het toepassen van een groutboog voor deze drie functies was nieuw.

Ter plaatse van de stations was de bouwput te breed om een groutboog te kunnen toepassen. Hier is gebruik gemaakt van een gellaag voor de verticale stabiliteit en het tegenhouden van het grondwater. Deze oplossing was in ons land al diverse keren met succes toegepast.

Groutboog niet waterdicht

De bouw startte in maart 1996. Het aanbrengen van de diepwanden en damwanden verliep vrijwel zonder verzakkingen van de nabijgelegen bebouwing. Toen het dak was aangebracht werd begonnen met het ontgraven van de bouwput. In februari 1998 was de bouwput op de Kalvermarkt bijna volledig ontgraven, toen er via wellen grondwater omhoog kwam. De groutboog bleek niet waterdicht. Er werd nog geprobeerd om de wellen te dichten met injecties en het aanbrengen van geotextiel en ‘big bags’ als ballast, maar dit bleek niet te werken. Nadat er naast de damwand een gat in de straat ontstond door weggespoeld zand, werd besloten om de lekkage te stoppen door de bouwput onder water te zetten. Hierdoor kwam de bouw stil te liggen.

Deze situatie duurde uiteindelijke ruim twee jaar. In deze periode werd beoordeeld of de lekkage aan de Kalvermarkt een incident was of dat de onbeheersbare welvorming inherent was aan de in het bestek voorgeschreven bouwmethode met de groutboog. Uit een faalkansanalyse bleek dat de kans om meer lekken in de groutboog groot was en dat het weggraven van grond boven een lekke groutboog alleen veilig is als er voldoende grond achterblijft op de boog. Bij de tramtunnel was een dergelijke gronddekking niet haalbaar, omdat de grond op sommige plekken vrijwel tot op de boog ontgraven moest worden.

Tramkom heeft daarom gezocht naar een alternatieve methode voor het afbouwen van de tunnel. Na verschillende opties te hebben bekeken, is besloten om de delen met een groutboog onder verhoogde luchtdruk (1,14 bar) af te bouwen om te zorgen dat er nauwelijks een verschil zou zijn met de waterdruk onder de groutboog. In juni 2000 werd voor de delen met een groutboog het contract omgezet in een ‘design & construct’. Tramkom nam daarmee de verantwoordelijkheid op zich voor het gewijzigde ontwerp. Verder werd afgesproken dat de overige delen van de tunnel volgens het bestek werden afgebouwd.

Verhoogde luchtdruk

Het afbouwen onder verhoogde luchtdruk, had ingrijpende gevolgen. Zo moesten er luchtsluizen worden gemaakt voor mensen en materieel en moest alle afgegraven grond via deze sluizen worden afgevoerd. Om de luchtkwaliteit in de compartimenten met hoge luchtdruk goed te houden werd er alleen met elektrisch materieel gewerkt. Verder konden de bouwers minder lang werken en moesten elke keer bij het verlaten van het compartiment maatregelen worden genomen om ‘caissonziekte’ te voorkomen.

Ook constructief waren er extra maatregelen nodig om geen problemen te krijgen door de hogere druk. Bij tunnel onder de Kalvermarkt moest de vloer boven de eigenlijke tramtunnel – die al was gestort – tijdelijk met een staalconstructie worden verstevigd. Verder moesten hier groutankers worden aanbracht om te voorkomen dat de stalen damwanden omhooggedrukt zouden worden. Onder de Grote Marktstraat was de vloer boven de tunnel nog niet gestort. Om deze vloer geschikt te maken voor de verhoogde luchtdruk werd hij veel zwaarder uitgevoerd en werd gekozen voor een andere verbinding met de diepwanden. Verder werd er tijdelijk ballast op de vloer geplaatst.

Bemalingsproblemen

In de zomer van 2000 werd ook het ontgraven van de bouwput voor station Spui hervat. In juli ontstond hier een wel, vlakbij het compartimenteringsscherm dat de bouwput van station Spui en de bouwput van de Kalvermarkt scheidde. Deze laatste stond nog onder water. Na enkele uren bezweek het scherm en liep ook de bouwput bij het Spui onder. Om dit probleem te verhelpen werd eerst het scherm versterkt en vervolgens grond tegen het scherm aangebracht. Daarna kon het water uit de bouwput Spui worden gepompt.
De maanden daarna bleef de bemaling – die gedurende de tweejarige bouwstop steeds had gefunctioneerd en water wegpompte tussen de gellaag en een daar boven gelegen veenlaag – problematisch. Filters slibden dicht waardoor onvoldoende grondwater kon worden weggepompt. Daardoor dreigde de waterspanning onder de veenlaag zo hoog te worden dat deze zou opbarsten en vervolgens de diepwanden zouden vervormen.

Om de bemaling weer op het gewenste niveau te krijgen, zijn verschillende maatregelen genomen. De grond uit de bouwput is in sleuven van ongeveer zes meter afgegraven over de breedte van de bouwput. Nadat een sleuf was ontgraven is hierin een werkvloer gestort die tegelijkertijd als stempel diende. Voor de bemaling is een groot aantal grondpalen aangebracht, die op de hoogte van de veenlaag waren ‘afgestopt’ en daaronder waren voorzien van een filter. Dat maakte het mogelijk om deze palen ‘aan’ en ‘uit’ te zetten. Pas als het ontgraven begon startte de bemaling. Door deze werkwijze hoefde de bemaling per sleuf slechts drie weken te werken.

Inzichten

Door alle problemen werd de tunnel uiteindelijk ruim vier jaar later in gebruik genomen dan gepland en namen de bouwkosten met circa 100 miljoen euro toe. Na deze moeilijke start, functioneert de tunnel goed. De problemen hebben ook tot de nodige inzichten geleid. Zo concludeert de Delftse hoogleraar funderingstechniek Frits van Tol in 2004 in een artikel in het blad Geotechniek onder andere dat de Tramtunnel nog eens heeft duidelijk gemaakt dat bij ondergronds bouwen:
voldoende robuust moet worden ontworpen
rekening moet worden gehouden met afwijkingen in de bodem en de gerealiseerde (deel)constructies
vooraf moet worden geïnventariseerd welke gevolgen het falen van onderdelen van de constructie hebben
en vooraf maatregelen moet zijn voorbereid om de gevolgen van falen te minimaliseren.
Ook geeft hij aan dat bij de toepassing van waterkerende lagen die zijn gemaakt met groutinjecties, altijd rekening moet worden gehouden met lekken. Verder adviseert hij om softgellagen alleen als waterremmende laag te gebruiken als de bouwfase niet langer dan twee jaar duurt.

Hoe zorg je ervoor dat nieuwe kennis landt in de praktijk?

Vanuit het bedrijfsleven was prof. dr. ir. Timo Heimovaara intensief betrokken bij het TRIASonderzoek naar in-situ bodemsaneringstechnieken. Inmiddels is hij hoogleraar Geo-environmental Engineering aan de TU Delft en onderzoekt hij hoe natuurlijke processen actief kunnen worden ingezet voor het oplossen van geotechnische en civieltechnische vraagstukken. Een gesprek over zijn ervaringen en plannen met kennisontwikkeling en markttoepassing.

“Ik geloof niet dat er een standaardaanpak is die garandeert dat nieuw ontwikkelde kennis en technologie ook daadwerkelijk wordt toegepast”, stelt Heimovaara. “Een succesvolle stap van kennis naar markttoepassing vraagt in ieder geval de betrokkenheid van verschillende disciplines, zoals technici, bedrijfskundigen en mensen met marktkennis. Daarnaast zijn er probleembezitters nodig. Verder is het belangrijk dat de juiste persoon op het juiste moment zijn verantwoordelijkheid neemt. Los daarvan zijn er algemene factoren. Hoe worden projecten bijvoorbeeld aanbesteed? Als dat gebeurt via dichtgespijkerde bestekken is er weinig stimulans voor aanbiedende partijen om met slimme oplossingen te komen. En dat geldt ook als opdrachtgevers aanbiedingen uitsluitend op prijs beoordelen of alleen bewezen technieken accepteren. Een andere belangrijke factor is de cultuur binnen organisaties. Investeren ze in kennisontwikkeling om de eigen concurrentiekracht te vergroten en nieuwe markten te ontwikkelen of denkt het management ‘onze aanpak werkt al jaren goed, dus waarom zouden we het anders gaan doen’?”

In-situ technieken

Na zijn promotieonderzoek en een postdocfunctie ging Heimovaara werken bij ingenieursbureau IWACO. Als milieuconsultant hield hij zich daar vooral bezig met in-situ bodemsaneringen en bodembeleid. Heimovaara: “De aanpak van bodemverontreinigingen stond in die tijd volop in de belangstelling. Vrij snel na de sanering van de woonwijk in Lekkerkerk werd duidelijk dat het volledig verwijderen van alle verontreinigingen niet haalbaar was en dat met biologische in-situ technieken ook goede resultaten mogelijk waren.”

“Toen we met in-situ saneringen begonnen, werd er in eerste instantie geen onderzoek gedaan naar de werking van deze technieken en de onderliggende processen. Na verloop van tijd kwamen allerlei kennisleemten in beeld en startte het TRIAS-onderzoeksprogramma, waarbinnen SKB, NWO en Delft Cluster samenwerkten met marktpartijen. Het programma telde twaalf vraaggestuurde onderzoeksprojecten, die grotendeels door PhD-studenten en postdocs werden uitgevoerd. Zelf heb ik toentertijd vanuit het ingenieursbureau, en later als expert bij een bodemsaneerder, vier of vijf van die promotieonderzoeken begeleid. Een belangrijke uitkomst was dat de theorie en de resultaten in het laboratorium vaak niet overeenkomen met de resultaten in het veld, en dat je voor goede praktijkresultaten al metend en monitorend je saneringssysteem moet ontwerpen en dimensioneren. Een uitkomst die volgens mij voor veel ingrepen in de bodem geldt.”

Praktijkrelevantie

“De TRIAS-onderzoeken waren op een aantal punten zeer succesvol. Door de betrokkenheid van bedrijven bij het onderzoek was er voortdurend oog voor de praktijkrelevantie. Het onderzoek leverde waardevolle inzichten op voor marktpartijen en maakte duidelijk wat wel en niet belangrijk was. Daarnaast kregen de betrokken bedrijven zicht op goede onderzoekers. Dat vonden we waardevol, want ons idee was dat een deel van de PhD-studenten na afloop in dienst zou treden bij de betrokken bedrijven. Op die manier zou de nieuwe hoogwaardige kennis daar een plek krijgen. Dat bleek niet zo te gaan. De meeste PhD-studenten waren buitenlanders en vertrokken na hun promotie weer.”

“Naar aanleiding van die ervaring ben ik gaan nadenken over de optimale opzet van vraaggestuurde onderzoeksprogramma’s. Volgens mij is dat een opzet waarbij wetenschap en marktpartijen samenwerken, onder meer om te zorgen dat de uitkomsten van theoretisch en fundamenteel onderzoek worden vertaald naar de bedrijfspraktijk. Verder zou het volgens mij ideaal zijn om de PhD-studenten die het onderzoek uitvoeren een vijfjarig contract te geven, waarbij ze vier jaar onderzoek doen en vervolgens een jaar bij een van de bedrijven werken om de nieuw ontwikkelde kennis in de praktijk toe te passen. Tot nu toe is het me niet gelukt om een onderzoeksprogramma op deze manier vorm te geven.”

Van 1995 tot 2015 is er vanuit SKB onderzoek gedaan naar bodem en ondergrond. De resultaten van het programma zijn te vinden in een uitgebreid online eindverslag. (Beeld: www.skbodem.nl)

Bodembacteriën

Na ruim tien jaar in het bedrijfsleven te hebben gewerkt, keerde Heimovaara in 2007 terug naar de academische wereld. In dat jaar begint hij als universitair hoofddocent Duurzame bodemsysteemdiensten bij de afdeling Geo-Engineering van de TU Delft, vijf jaar later wordt hij daar hoogleraar. “In 2011 zijn we gestart met het zogeheten BioGeoCivil-onderzoeksprogramma met ondersteuning vanuit STW. Binnen dit programma onderzoeken we onder meer hoe we bodembacteriën gericht kunnen inzetten voor het oplossen van geotechnische en civieltechnische vraagstukken. De bekendste techniek is waarschijnlijk biogrout, een techniek om zandige bodems te verstevigen. Daarnaast kijken we naar allerlei andere processen en technieken. We bestuderen bijvoorbeeld hoe we met micro-organismen de corrosie van stalen elementen in de bodem kunnen minimaliseren, doen onderzoek naar het verduurzamen van vuilstortplaatsen en onderzoeken hoe we biofilms kunnen gebruiken om de aantasting van hout te voorkomen.”

“Binnen BioGeoCivil werken we samen met allerlei andere kennispartijen. Bij de start van het onderzoeksprogramma was mijn hoofddoel om de verschillende ‘werelden’ bij elkaar te brengen en samen een nieuw onderzoeksdomein te ontwikkelen. Eventuele praktijktoepassingen stonden nog laag op mijn prioriteitenlijstje. Toen ik vorig jaar door verschillende marktpartijen werd benaderd met vragen over het minder doorlatend maken van zandpakketten, was ik dan ook aangenaam verrast. Heijmans en Movares vroegen bijvoorbeeld of we een zandlaag onder een dijk minder permeabel kunnen maken en het hoogheemraadschap van Schieland en de Krimpenerwaard of we de bodem van een zwemplas waterdichter kunnen maken, zodat de waterkwaliteit op de lange duur kan worden gewaarborgd. En ook Tauw en de gemeente Rotterdam klopten met vergelijkbare vragen bij ons aan.”

Lees meer over de Waterontspanner (zie kader hiernaast) in het artikel Slimme oplossing voor instabiele rivierdijk van Heijmans en De oplossing voor de beperking van wateroverlast van Movares. (Beeld: via movares.nl)

Ondoorlatende laag

“Ik vind het een positieve ontwikkeling dat deze organisaties bereid zijn om zelf in kennisontwikkeling te investeren, dat ze inzien dat de innovaties die wij ontwikkelen passen bij hun ambities. Het lastige met nieuwe technologie is vaak dat marktpartijen haar pas willen toepassen als ze zich bewezen heeft in de praktijk. Als je dit combineert met het gegeven dat onderzoekers in het laboratorium heel moeilijk kunnen bepalen hoe je een nieuwe technologie in het veld moet dimensioneren, heb je een klassiek kip-of-eiprobleem. Daarom ben ik blij dat Heijmans, Movares en Waterschap Rivierenland willen meedoen aan een pilot (zie kader).”

“Nu ik weet dat er bedrijven en organisaties zijn die zelf willen investeren in kennisontwikkeling, probeer ik samen met bedrijven zoals Tauw en het ministerie van Infrastructuur en Milieu een groter onderzoeksproject van de grond te krijgen. Als we alle budgetten bij elkaar leggen, moet het met een bijdrage van twintig tot vijfentwintig procent van de overheid lukken om de ontwikkelde kennis generiek toepasbaar te maken, projectoverschrijdend, precompetitief onderzoek te doen en bijvoorbeeld alle meetdata met elkaar te delen. Verder wil ik proberen om binnen KIBO, het Kennis- en Innovatieprogramma Bodem en Ondergrond van het ministerie van IenM, een businesscase in-situ permeabiliteitsbeïnvloeding onder te brengen. Via al deze sporen moet het lukken om de nieuwe kennis straks echt te laten landen.”

Ruimte voor duurzaamheid

Het waarmaken van de ambitie om in de Rotterdamsebaan de meest duurzame tunnel van Nederland te maken, vraagt om nieuwe invalshoeken, kruisbestuiving en inspiratie. Duurzaam ontwerper en ondernemer Daan Roosegaarde en vijftien dwarsdenkende jongeren van NXT Generation gaven het voorbeeld.

Daan Roosegaarde en de jongeren zorgden met hun verhalen voor inspiratie tijdens de kickoffbijeenkomst van het expertteam dat de duurzaamheidsdoelen voor de Rotterdamsebaan gaat benoemen en er EMVI-criteria voor opstelt. “Zoek naar creëerplekken waar verschillende disciplines samenwerken en waar je de ruimte krijgt om foutjes te maken. Dan doe je opeens dingen die je nooit alleen had kunnen bereiken”, aldus Roosegaarde. Aan de hand van een aantal voorbeelden liet hij de experts en andere aanwezigen zien hoe verwondering en ‘anders kijken’ tot onverwachte inzichten en oplossingen kan leiden. Beroemd is zijn idee voor glow in the dark-belijning op snelwegen, waarin hij veiligheid en besparing op energiekosten voor verlichting combineert. In het voetgangersgedeelte van de Maastunnel in Rotterdam stond het tijdelijke kunstwerk Dune 4.1. De honderden ledlampjes reageerden op het geluid en de beweging van passanten. Dit had veel effect op de beleving; de tunnel werd zelfs een gewilde locatie voor trouwreportages.

Daan Roosegaarde tijdens de kickoffbijeenkomst. (Foto: COB)

Ook NXT Generation zorgde voor inspiratie. Het team doet mee aan de FIRST LEGO League, een wedstrijd die jongeren tussen de negen en vijftien jaar uitdaagt om de maatschappelijke rol van techniek en technologie te onderzoeken. Hiervoor bedachten ze een ondergronds tunnelsysteem om een stadje tegen tornado’s te beschermen. Voor de Rotterdamsebaan hebben ze een aantal aanbevelingen opgesteld onder het motto ‘Duurzaam moet je niet doen, maar duurzaam moet je zijn’. Bedrijven die bij de bouw van de tunnel betrokken zijn, moeten bijvoorbeeld laten zien dat ze zelf ook duurzaam zijn. Verder moet er van tevoren nagedacht worden over toekomstig hergebruik: waar ga je de tunnel voor gebruiken als er niet zo veel verkeer meer is?

Dit was de Onderbreking Duurzaamheid

Bekijk een ander koffietafelboek: