Loading...

De Onderbreking

Meten is weten

Meten is weten

Duurzaamheid van zinkvoegen

Rotterdam, Stationsgebied

Wie ruikt het innovatiefst?

Virtual Design and Construction

Onderbreking Meten is weten

Georisicomanagement conservatoriumhotel

Delft, Willem van Oranjetunnel

Interactief met bodeminformatie

Beheren, meten en optimaliseren

Kennisbank

Meten is weten

Ondergronds bouwen is teamwerk. Vernieuwingen zijn succesvol als we samen vraagstukken uitpluizen en doelen stellen. Tussen ‘waar gaat het om’, ‘wat gaan we doen’ en ‘wat zijn de consequenties daarvan’ moeten we flink verzamelen, meten en bepalen. 

In de wereld van de civiele techniek en ruimtelijke ordening wordt om de meest uiteenlopende redenen gemeten. Meten is onlosmakelijk verbonden met kennisontwikkeling. We verzamelen gegevens om voorspellingen te doen, of om ze juist te controleren. De betekenis van data geeft zich echter niet zomaar prijs. We hebben analyses en interpretaties nodig om de datastroom te duiden. Ook dát hoort bij meten.

Duurzaamheid van zinkvoegen

Hoewel Nederlandse ingenieurs bepaald niet onervaren zijn in het ontwerpen en bouwen van zinktunnels, is lekkage bij zinkvoegconstructies in bestaande tunnels een reëel risico. Experts uit het COB-netwerk buigen zich over de kwestie: hoe kunnen zulke lekkages ontstaan en wat kun je ertegen doen?

Zinktunnels zijn in Nederland haast niet meer bijzonder. In 1937 begon het met de bouw van de Maastunnel en een van de meest recente is de Tweede Coentunnel (2009-2013). In Amsterdam werd zelfs een zinktunnel onder het centraal station gerealiseerd. Ook onderhoud en renovatie zijn van alle tijden, maar daarbij kampen we soms met vragen. Zo moest de Coentunnel Company bij de renovatie van de Eerste Coentunnel een lekkage in de voegconstructie oplossen, waarvan de oorzaak niet eenduidig was. Wat is dan de beste aanpak?

Lekkage bij zinkvoegen is echter niet alleen een probleem voor de Coentunnel Company; alle zinktunnelbeheerders kunnen ermee te maken krijgen, zoals Rijkswaterstaat, gemeenten en private ondernemingen. Doordat zink- en sluitvoegen niet of moeilijk inspecteerbaar zijn, is het niet direct vast te stellen wanneer lekkage optreedt. Zijn alle mechanismen die zich hierbij voordoen herkenbaar en wat zijn de gevolgen? De veiligheidsrisico’s zijn klein. De economische schade bij lekkende (zink)voegen is echter groot als een tunnelbuis bijvoorbeeld tijdelijk moet worden afgesloten voor herstel. Daarom hebben de Coentunnel Company en Rijkswaterstaat het COB benaderd om een gezamenlijk onderzoeksproject uit te voeren. Dankzij de positieve reacties uit het netwerk kon het project snel van start.

Doel van het project

Inmiddels zijn er al flinke stappen gemaakt. Allereerst is vastgesteld waar het onderzoek zich precies op richt: het aandragen van toepasbare oplossingsrichtingen om het risico op lekkage in bestaande zinkvoegconstructies in te schatten en beheersbaar te maken. Het gaat in eerste instantie niet om het aanpassen van details voor nieuwbouw, maar om het bepalen van maatregelen bij het uitvoeren van renovatie, onderhoud en beheer, omdat hier de grootste behoefte ligt. Het project kan wel leiden tot adviezen voor vervolgonderzoek of voorstellen voor aanpassingen van de detaillering bij nieuwbouw.

In mei 2013 werd de Tweede Coentunnel opengesteld voor verkeer. Direct daarna is gestart met de renovatie van de Eerste Coentunnel. De Coentunnel Company is, als opdrachtnemer van Rijkswaterstaat, via een DBFM-contract tot en met 2037 verantwoordelijk voor het onderhoud van beide Coentunnels. (Foto: Beeldbank RWS/Aerophoto Schiphol)

Faalmechanismen

Om iets te kunnen zeggen over risico’s op lekkage bij zinkvoegen, is inzicht nodig in het ontstaan van die lekkages, oftewel de faalmechanismen. Voor de analyse hiervan neemt de werkgroep ontwerpdetails uit SATO als uitgangspunt. SATO (Specifieke Aspecten Tunnelontwerp) is de richtlijn die Rijkswaterstaat hanteert bij het ontwerpen van tunnels. Aangezien sinds de Eerste Coentunnel in principe bij alle tunnels de SATO-details voor zinkvoegen zijn toegepast, is het logisch deze details als uitgangspunt te gebruiken.

Voor de renovatie van de Eerste Coentunnel heeft de Coentunnel Company de SATO-details al geanalyseerd op mogelijke faalmechanismen. De resultaten zijn samengevat in een zogeheten foutenboom, een schema dat toont hoe ongewenste gebeurtenissen tot stand kunnen komen. De werkgroep heeft deze boom zodanig aangepast dat hij voor iedere zinktunnel van toepassing is. Per faalmechanisme is een risico-inschatting gemaakt, gebaseerd op uitgebreid literatuuronderzoek en verzamelde kennis.

Uit een onderzoek bij de Vlaketunnel bleek bijvoorbeeld dat een rubber voegafdichting van vijfendertig jaar oud nog steeds voldoet aan de normen, en een rapport over de renovatie van de Kiltunnel wijst erop dat corrosie van de klemconstructie van het Omegaprofiel een risico kan zijn. Een eerdere publicatie van werkgroeplid Leo Leeuw (Nebest, voorheen Bouwdienst Rijkswaterstaat) geeft aan dat zettingsverschillen kunnen leiden tot lekkages in voegen. Er is echter weinig te vinden over optredende zettingen bij Omega- en/of Ginaprofielen: van de meeste tunnels zijn de zettingsmetingen pas een jaar na oplevering gestart, terwijl juist in de eerste periode (dagen tot maanden) na het afzinken, onderspoelen en aanvullen van de zinksleuf de grootste zettingen worden verwacht. Uit een inventarisatie blijkt vooralsnog dat alleen bij de Botlektunnel zettingen vanaf de afzinkfase gemeten zijn.

Vervolg

De eerste drie werksessies hebben laten zien dat er veel kennis beschikbaar is, maar dat er ook de nodige informatie ontbreekt. Daarom gaan de leden in vier subgroepen de faalmechanismen uit de foutenboom nader bekijken, en de boom uitwerken tot een overzicht van mogelijke oplossingen voor het beheersbaar maken van de risico’s. Het gaat daarbij om het vinden van een antwoord op de vraag wat er (technisch) moet gebeuren wanneer er een lekkage optreedt bij een zinkvoeg in een bestaande tunnel.

Stationsgebied Rotterdam

Na jaren van bouwactiviteiten is op 13 maart 2014 het vernieuwde station Rotterdam Centraal geopend. Het station is niet alleen bovengronds drastisch aangepakt; ondergronds is er gewerkt aan de aansluiting van de RandstadRail op het Rotterdamse metronet, een nieuw ondergronds metrostation, een grote fietsenstalling onder het stationsplein, de nieuwe Weenatunnel en een vijflaags parkeergarage onder het nabijgelegen Kruisplein.

De grondige aanpak van Rotterdam Centraal is onderdeel van de Nieuwe Sleutelprojecten (NSP): integrale stedelijke projecten op en rond de Nederlandse stations met een HSL-aansluiting. Groeiende reizigersaantallen vormden de aanleiding voor de grootscheepse verbouwing van Rotterdam Centraal en omgeving. De verwachting is dat het aantal reizigers dat dagelijks gebruik maakt van dit vervoersknooppunt rond 2025 zal zijn toegenomen van de huidige 110.000 tot circa 320.000. De groei komt onder meer door de aansluiting op het Europese net van hogesnelheidstreinen en de aansluiting op de lightrailverbinding RandstadRail.

Boortunnel RandstadRail

RandstadRail is de lightrailverbinding tussen Rotterdam, Den Haag en Zoetermeer. Voor het traject tussen Rotterdam en Den Haag is voor een groot deel gebruik gemaakt van de Hofpleinlijn, de voormalige heavyraillijn van de NS. Alleen voor het laatste stuk naar Rotterdam Centraal is een nieuwe drie kilometer lange ondergrondse verbinding aangelegd. Deze bestaat uit twee enkelsporige tunnels die grotendeels als boortunnel zijn uitgevoerd. Deze geboorde tunnelbuizen hebben een buitendiameter van 6,5 meter.

De nieuwe verbinding takt ter hoogte van het Sint Franciscus Gasthuis af van de Hofpleinlijn en passeert vervolgens de spoorlijn Rotterdam-Gouda (de Goudse Lijn), de A20 en het Noorderkanaal. Halverwege het tunneltracé ligt het nieuwe ondergrondse station Blijdorp. Na dit station loopt de tunnel over ruim een kilometer onder de Statenweg en kruist vervolgens het NS-emplacement van station Rotterdam Centraal. Naast dit emplacement sluit RandstadRail aan op het metrostation Rotterdam Centraal en de metrolijn naar Rotterdam-Zuid.

Station Blijdorp. (Foto: Flickr/FaceMePLS)

De boortunnel van RandstadRail is aangelegd door Saturn v.o.f., een aannemerscombinatie bestaande uit Dura Vermeer en Züblin. Het ingenieursbureau van de gemeente Rotterdam deed het vooronderzoek, schreef de bestekken en deed de aanbesteding. Daarnaast heeft het ingenieursbureau zes stations en haltes in eigen huis ontworpen en gerealiseerd.

Aanvullende maatregelen

De geboorde tunnel ligt over vrijwel de gehele lengte in het pleistocene zand. Om dit te realiseren, is tot een diepte van dertig meter geboord. Bij de aansluiting van de boortunnel op de conventioneel gebouwde tunneldelen (de startschacht bij het Sint Franciscus Gasthuis, station Blijdorp en de ontvangstschacht bij Rotterdam Centraal, die alle drie in een open bouwput zijn gemaakt) liggen de tunnelbuizen voor meer dan de helft in relatief slappe kleilagen. Hier zijn aanvullende maatregelen getroffen om ervoor te zorgen dat de tunnel voldoende stabiel ligt. Bij de startschacht is over een lengte van circa zestig meter de slappe grond vervangen door verdicht zand. Aansluitend op dit stuk is de grond over een lengte van zeventig meter versterkt met ‘mixed in place’, een techniek waarbij cement in de grond wordt geïnjecteerd.

Bij de zuidelijke aansluiting van de tunnelbuizen op station Blijdorp bestaan de tunnelwanden over een lengte van ongeveer vijftig meter niet uit betonnen segmenten, maar uit stalen buizen. Voor de overgang van het beton naar het staal, is een kom-nok verbinding toegepast. Voor de aansluiting op de ontvangstschacht bij Rotterdam Centraal is zowel een stalen tunnellining als grondverbetering gebruikt. De grondverbetering is gedaan met jetgrouten.

Boorproces

Het boorproces is in december 2005 gestart nabij het Sint Franciscus Gasthuis, aan de noordzijde van Rotterdam. Vanaf hier is in zuidelijke richting geboord naar station Blijdorp en de ontvangstschacht bij Rotterdam Centraal. Nadat in voorjaar 2007 de eerste tunnelbuis gereed was, is de tunnelboormachine weer teruggebracht naar de startschacht voor het boren van de tweede tunnelbuis. Een jaar later was deze tunnelbuis ook klaar.

Metrostation Rotterdam Centraal

Om metrostation Rotterdam Centraal geschikt te maken voor de aansluiting op RandstadRail is in 2006 begonnen met de bouw van een nieuw station. Het eerste deel was eind september 2009 gereed en vervolgens is het oude, ruim veertig jaar oude station gesloopt om het laatste deel van het nieuwe station te kunnen maken. In augustus 2010 was ook dit deel klaar en sinds dat moment rijden er metro’s tussen het nieuwe metrostation en Den Haag.

Het nieuwe station heeft twee eilandperrons, drie sporen en is rechtstreeks bereikbaar vanuit de stationshal van het treinstation en via ingangen aan het Weena en de Conradstraat. Het is ontworpen door Maarten Struijs van Gemeentewerken Rotterdam en gebouwd door Mobilis|TBI. Het contrast met het oude ondergrondse station is groot. Dit station had één slecht verlicht eilandperron en twee sporen. Het nieuwe station heeft grote perrons, hoge plafonds en veel licht en ruimte.

Bouwmethode

Voor de bouw van het nieuwe metrostation is gekozen voor de wanden-dakmethode. Aan drie zijden zijn diepwanden gemaakt tot een diepte van ruim veertig meter. Op deze diepte ligt de zogeheten Laag van Kedichem, een vrijwel waterdichte kleilaag. Aan de vierde zijde kon geen diepwand worden gemaakt, omdat hier de metrotunnel lag van de lijn naar Rotterdam-Zuid. Bovendien zaten hier grondankers van nabijgelegen gebouwen in de grond. Om de bouwkuip toch te sluiten en vrij te houden van grondwater hebben de experts van Ingenieursbureau Rotterdam aan deze zijde met vloeibare stikstof en pekel een waterdichte ijswand gemaakt. Deze vrieswand van ongeveer 50 meter breed, 40 meter diep en ruim 2,5 meter dik was zodanig vormgegeven dat het metroverkeer er tijdens de bouw door kon rijden. De wand is bijna twee jaar in stand gehouden totdat de de vloer en de wanden van het nieuwe station gereed waren.
(Foto: Via buizen wordt koudemiddel rondgepompt om de grond te bevriezen, via Mobilis)

Fietsenstalling Rotterdam Centraal

Onder het stationsplein is een grote ondergrondse fietsenstalling gebouwd voor meer dan vijfduizend fietsen. Deze stalling heeft een directe verbinding met het ondergrondse metrostation. Gebruikers kunnen hier op de metro stappen of via dit station doorlopen naar trein, bus of tram. Net als het metrostation is de stalling ontworpen door architect Maarten Struijs en gebouwd door Mobilis|TBI. Licht en kleuren zorgen voor een prettige sfeer in de stalling. Het plafond, de kolommen en de wanden zijn wit. De vloer van de hoofdroute is rood, terwijl voor de gangen met de fietsenrekken de kleuren paars, blauw, groen, geel en oranje gebruikt zijn. Dit kleurgebruik maakt het eenvoudiger om je gestalde fiets terug te vinden.

Bouwmethode

Voor de stalling is gebruikgemaakt van de wanden-dakconstructie om overlast op straatniveau zo veel mogelijk te beperken. Aan de noordkant is voor de bouwkuip gebruikgemaakt van de damwanden van het metrostation, en aan de zuidkant van de damwanden van de nieuwe Weenatunnel.

Weenatunnel

Het Weena is een drukke oost-westverbinding voor autoverkeer. Om voor voetgangers een veilige oversteek tussen het stationsplein en het nieuwe Kruisplein te kunnen maken, was het noodzakelijk om al het autoverkeer op het Weena naar ondergronds te brengen. Hiervoor is de oude tweebaanstunnel vervangen door een nieuwe 350 meter lange tunnel met twee tunnelbuizen en totaal vier rijbanen.

De bouw vergde de nodige fasering om ervoor te zorgen dat de trams en het wegverkeer konden blijven rijden tijdens de bouwwerkzaamheden. Als eerste is een overkluizing gemaakt voor de tramsporen over het tunneltracé. Terwijl het verkeer gebruikmaakte van de bestaande tunnel, is aan de zuidzijde hiervan een nieuwe tunnel gebouwd. Toen deze klaar was, is het verkeer hier doorheen geleid en is de bestaande tunnel gesloopt en vervangen door een nieuwe. Vanuit de zuidelijke tunnelbuis loopt er een ondergrondse verbindingsweg naar de Kruispleingarage en de Schouwburgpleingarage.

Kruispleingarage

De Kruispleingarage, de diepste parkeergarage van Nederland, is eind 2013 opgeleverd. Het diepste punt van deze garage ligt op twintig meter beneden NAP. De parkeergarage ligt tegenover Rotterdam Centraal, is 150 meter lang, ruim 30 breed en telt vijf verdiepingen. Er kunnen 760 auto’s in. Het garage is ontworpen door gemeentearchitect Maarten Struijs, die ook de fietsenstalling en het metrostation onder Rotterdam Centraal ontwierp.

In het dak van de Kruispleingarage is een waterberging gebouwd om bij hevige buien water uit de Westersingel tijdelijk op te vangen. Stijgt het water in deze singel meer dan tien centimeter, dan stroomt een deel van het water de berging in. Voor de waterberging is het zogeheten watershellsysteem gebruikt. Dit systeem bestaat uit lichtgewicht koepelvormige elementen waarop een betonvloer wordt gestort. De elementen worden gedragen door kunststof poten die ervoor zorgen dat het gewicht van de vloer en de grond op de waterberging gelijkmatig wordt doorgegeven naar het dak van de parkeergarage.

De Kruispleingarage is bereikbaar vanuit de Weenatunnel. In deze tunnel is een afslag die toegang geeft tot een lange ondergrondse straat met aan het einde een rotonde. Via deze rotonde kunnen auto’s de Kruispleingarage in en ook de verderop gelegen Schouwburgpleingarage. Bovenop de garage ligt het autoluwe Kruisplein. Dit plein is als verbinding tussen binnenstad en station één van de belangrijkste pleinen van de stad.

Wie ruikt het innovatiefst?

“Wat we zoeken, is de 1.0-versie van wat wij het Detectiesysteem voor Ondergrondse Infrastructuur (DVOI) noemen.” Wim van Grunderbeek van Gasunie streeft naar een ‘open source’-detectieoplossing voor de ondergrond voor heel Nederland. “Van daaruit willen we een systeem ontwikkelen dat moet leiden tot voor iedereen begrijpelijke 3D-plaatjes van de ondergrond.” De prijsvraag die de Gasunie hiervoor in maart uitschreef, nadert zijn ontknoping.

De vraag naar meer inzicht in de ondergrond volgt uit het Gasunie Network Improvement Program (GNIP), dat in 2013 startte en waarbinnen al het ondergrondse onderhoud voor de komende vijftien jaar is vastgelegd. Wim van Grunderbeek: “We gaan uit van duizenden onderhoudsactiviteiten in de ondergrond. Dat zou betekenen dat we op basis van de Wet informatie-uitwisseling ondergrondse netten (WION) tienduizenden proefsleuven moeten graven, met alle veiligheidsrisico’s van dien. Als we het aantal graafbewegingen met vijfenzeventig procent kunnen reduceren, kunnen we het veiligheidsrisico enorm beperken. En passend in het MVO-beleid van de Gasunie beperken we tegelijkertijd de overlast voor de omgeving en laten we minder sporen achter.”

BV Nederland

Maar dat is niet de enige motivatie voor het uitschrijven van een prijsvraag. Van Grunderbeek: “Niet alleen voor Gasunie, maar ook voor de BV Nederland is dit project veelbelovend. Gasunie zoekt een detectiesysteem dat nauwkeuriger is dan wat er nu op de markt is; een systeem dat op de x-, y- en z-as binnen de vijf centimeter nauwkeurig is, en dat bij voorkeur achter in een busje past, zodat er overal op locatie gemakkelijk mee gewerkt kan worden. We willen partijen die niet alleen een sterk, vernieuwend verhaal hebben, maar ook een trackrecord. Het maakt ons niet uit welke techniek er wordt gebruikt. We zoeken vernieuwing en optimalisatie: wie ruikt het innovatiefst?”

“We zitten nu in fase drie van de Europese aanbesteding. Er zijn al veldtesten gedaan. Deze worden door een jury van deskundigen vanuit TU Delft, Wageningen UR, het COB en DNV en twee landmeetkundigen beoordeeld op kwaliteit. Op basis van de uitkomsten willen we deelnemers vragen een plan op te stellen waarmee kan worden voldaan aan de vraag van Gasunie. Dat moet leiden tot veiliger werken, kostenbesparing en een kleinere kans op graafschade. Want ook al is het daar primair niet om begonnen, het DVOI zal ook financieel voordeel opleveren. Zeker voor Gasunie zelf, omdat wij uit veiligheidsoverwegingen altijd gebruikmaken van zuigtechniek, die tot wel vier keer duurder is dan traditioneel graven. Maar bijvoorbeeld ook voor partner Liander en andere partijen die met kabels en leidingen werken, kan dit systeem het aantal proefsleuven beperken en daarmee kosten besparen.”

Open source

De prijsvraag is voor Wim van Grunderbeek de eerste stap in het beter, slimmer en eenvoudiger in beeld brengen van de ondergrond. “De 1.0-versie die uit deze aanbesteding volgt, willen we, samen met onder andere Liander, verder uitwerken. Het uitgangspunt is dat we vanuit ‘open source’ verder ontwikkelen om zo te realiseren wat commerciële partijen tot op heden niet gelukt is. Het is nog niet bekend hoe we dat proces precies vormgeven, maar je kunt denken aan een samenwerkingsverband waarin allerlei partijen kunnen participeren. Als einddoel zie ik een systeem waarbij de kraanmachinist op zijn tablet precies kan zien waarin hij aan het werk is.

Met de ervaringen die we in dit traject opdoen, zouden we in een later stadium ook het COB-rapport Kabels en leidingen detecteren zonder graven kunnen herijken. Dan is de cirkel rond, want met dat rapport is het eigenlijk allemaal begonnen. Vragen uit dat rapport hebben we soms letterlijk overgenomen in de Europese aanbesteding.”

'Kan de onderdoorgang niet gewoon daar?'

Men neme een Bouw Informatiemodel (BIM), drie grote smartboards en een zaal vol stakeholders en je doet aan Virtual Design and Construction. Zo eenvoudig lijkt het op het eerste gezicht, maar niets is minder waar. De VDC-methode van Royal HaskoningDHV is een omslag in denken; een andere aanpak die lef vergt.

Volgens Royal HaskoningDHV zorgt Virtual Design and Construction (VDC) voor een breed gedragen ontwerp, minder faalkosten en een snellere doorlooptijd. “Je krijgt meer voor minder”, stelt Jeffrey Rampaart, projectmanager bij het adviesbureau.

“Bij een bouwproject heb je te maken met een keten van partijen. Iedereen streeft ernaar om een efficiënt ontwerp te creëren, waarmee het project binnen het budget, binnen de gestelde tijd en naar ieders tevredenheid kan worden gerealiseerd. Maar de schakels in de keten werken vaak relatief solitair en dat kan een efficiënt ontwerp in de weg staan. Elke partij heeft zijn eigen beleving en verwachtingen bij het project: hoe zorg je dat deze bij elkaar komen? Hoe zorg je ervoor dat iedereen die een belang heeft bij het project, meewerkt aan de oplossing? Wij denken dat je dit bereikt met een visuele methode zoals VDC.”

In beeld

VDC is ontwikkeld door Stanford University en door Royal HaskoningDHV geadopteerd en verder ontwikkeld. De methode is het best uit te leggen aan de hand van de iRoom, een ruim opgezette kamer met drie smartboards aan de muur. Hierop is tijdens een VDC-sessie voor een bouwproject een 3D-weergave van het ontwerp te zien (een BIM), evenals andere relevante informatie, zoals het Programma van Eisen of een luchtfoto van het plangebied. De deelnemers – vertegenwoordigers van alle stakeholders in het project – gebruiken de borden om ontwerpoplossingen te onderzoeken. Hoe scherp mag de bocht maximaal zijn, kunnen we nog een middenberm toevoegen, hoe ervaart een fietser de onderdoorgang? Op zulke vragen wordt ter plekke een antwoord gezocht.

De iRoom in het kantoor van Royal HaskoningDHV in Amersfoort. (Foto: RHDHV)

Het visualiseren van het ontwerp is dan ook een belangrijk aspect van VDC. Het is echter niet het enige. Ook de organisatie en het proces spelen een rol. Bij het selecteren van de deelnemers voor een VDC-sessie moet bijvoorbeeld over de organisatie worden nagedacht: je hebt alle stakeholders nodig om tot een echt integraal ontwerp te komen. Rampaart: “Met VDC werk je geïntegreerd op drie niveaus: een parallel proces vervangt het traditionele volgtijdelijke proces, je betrekt technische en niet-technische stakeholders en op productniveau integreer je zaken zoals ramingen, PvE, risicodossier, enzovoort.”

Simultaan, snel en samen

“VDC is dus meer dan het samen kijken naar een BIM. Sterker nog, het kan ook zonder BIM. Gezamenlijk nadenken over het ontwerp kan ook met flip-overs en post-its. Maar om alle stakeholders bij het proces te betrekken, moet je het ontwerp goed in beeld brengen en dat is bij de complexe projecten van tegenwoordig vrijwel onmogelijk zonder digitale hulpmiddelen”, meent Rampaart.

“De schermen zorgen er daarnaast voor dat je verschillende informatiebronnen kunt combineren. Je kunt bijvoorbeeld de uitgangspunten van het ontwerp letterlijk naast de visualisatie houden, of de huidige en geplande situatie met elkaar vergelijken. Door de visuele benadering kan bovendien iedereen meepraten, de barrière tussen technisch specialisten en beleidsmakers en bestuurders wordt veel kleiner. De klant voelt zich hierdoor meer gehoord. En misschien nog wel belangrijker: je kunt direct laten zien wat een wijziging in het ontwerp voor effect heeft, waardoor sneller keuzes gemaakt kunnen worden. Wat gebeurt er als je de onderdoorgang wat meer naar links plaatst? Is er dan nog voldoende ruimte voor een fietspad? Voor zulke wijzigingen hoef je nu niet terug naar de tekentafel. Je voert het ter plekke uit, waarna je ook gelijk het resultaat kunt bespreken. Dat werkt enorm efficiënt.”

Ideaal dus, dat VDC. Waarom zijn we nog niet massaal overgestapt? Rampaart: “Met VDC wordt het ontwerpproces een open proces, iedereen heeft inspraak. Dat schrikt sommige mensen af. De civiele bouwwereld is een conservatieve wereld, omdat de risico’s vaak groot zijn. Een radicaal andere aanpak wordt hierdoor niet direct omarmd. Je moet met een heel andere blik naar je eigen processen kijken. Daar is lef en vertrouwen voor nodig.”

Echte data

Royal HaskoningDHV gebruikt VDC nu twee jaar, en met succes. Rampaart denkt dat het bij projecten gemiddeld een kostenbesparing van tien tot dertig procent oplevert. “Daarnaast krijgt de klant een betere oplossing, omdat je de vraag nog eens tegen het licht houdt.” VDC leidde onder meer bij een alternatievenstudie voor spoorkruisingen in Ermelo tot tevredenheid van de klant. “We hebben daar de bestaande omgeving gedigitaliseerd en vervolgens de nieuwe plannen erin verwerkt”, vertelt Rampaart. “Zo ontstond er een heel nauwkeurig beeld van de toekomstige situatie. De gemeente kan het plan hiermee goed uitleggen aan het college, de gemeenteraad en inwoners.”

Het verschil met ‘gewone’ visualisaties is dat het 3D-model bij VDC gebaseerd is op de data van zowel de omgeving als het ontwerp. Ook de ondergrond wordt meegenomen. Bodem- en hydrologisch onderzoek, het DINOLoket, de GBKN en het Kadaster leveren veel van de benodigde gegevens. Maar zoals menig ondergrondse bouwer weet, blijft er altijd onzekerheid bestaan, bijvoorbeeld over de lokale bodemgesteldheid en de ligging van kabels en leidingen. Rampaart beaamt dat. “Informatie over ondergrondse infrastructuur wil inderdaad nog wel eens afwijken van de werkelijkheid. Bij VDC levert dat echter minder grote hindernissen op, omdat afwijkingen in de data veelal te klein zijn om het proces te verstoren. Bovendien zijn eventuele consequenties snel in beeld te brengen en aan te passen.”

Tijdens de VDC-sessie onderzoeken stakeholders mogelijke ontwerpoplossingen. (Foto’s: RHDHV)

Beleving

“De kracht van VDC is dat het ontwerp gaat leven. Techniek wordt beleving. Natuurlijk kunnen we de wethouder van Amersfoort vertellen wat je als automobilist ziet als je de tunnel inrijdt. Of een plaatje daarvan laten maken en hem dat laten zien. Maar als de wethouder die vraag stelt in een VDC-sessie, kun je ter plekke inzoomen op de inrit, de camera draaien en de situatie in beeld brengen. Tijdens een VDC-sessie voor een nieuwe onderdoorgang in Ermelo opperde iemand halverwege: ‘Kan de onderdoorgang niet gewoon in het midden?’. Toen hebben we het object domweg opgepakt en langs het spoor gesleept om te kijken waar hij paste. Zo kom je er ook achter wat níet kan en dat is evengoed nuttig om te weten.”

Zinkvoegen

Over de levensduurverwachting van zinkvoegen in tunnels in Nederland blijkt veel onzekerheid te bestaan. Het COB-netwerk heeft daarom een commissie ingesteld om onderzoek te doen. Op 10 december 2014 is de eerste rapportage opgeleverd. Daarna is de commissie verder gegaan met praktijkonderzoek. Inmiddels is duidelijk dat de opgaven breder zijn. De commissie is daarom opgenomen in het tunnelprogramma.

Zinkvoegen in tunnels in Nederland zijn nauwelijks inspecteerbaar en niet vervangbaar. Lekkage van de voegconstructies kan echter leiden tot onverwachte en langdurige afsluiting van rijstroken van de tunnels, met grote economische schade en hoge herstelkosten voor de tunnelbeheerders tot gevolg.

Tunnelprogramma

Omdat de instandhoudingsopgave zich niet beperkt tot zinkvoegen, is het onderzoek naar de levensduur van ondergrondse constructies onderdeel geworden van het tunnelprogramma. Binnen de ontwikkellijn Civiel anders (ver)bouwen wordt de commissie uitgebreid en anders ingericht. Er komen subcommissies over drie onderwerpen: voegen, deformaties van tunnels en degradatie van materialen. Daarboven komt een overkoepelende stuurgroep die de samenhang en kwaliteit van het onderzoek borgt.
>> Lees meer

In mei 2013 werd de Tweede Coentunnel opengesteld voor verkeer. Direct daarna is gestart met de renovatie van de Eerste Coentunnel. De Coentunnel Company is via een DBFM-contract tot en met 2037 verantwoordelijk voor het onderhoud van beide Coentunnels. (Foto: Beeldbank RWS/Aerophoto Schiphol)

Eerste fase

De Coentunnel Company benaderde in 2013 het COB om het probleem – in samenwerking met het netwerk – structureel te analyseren en beheersbaar te maken. Er is gekozen voor een gefaseerde aanpak waarbij op basis van een beperkt budget binnen een redelijke termijn de eerste resultaten kunnen worden bereikt. In de eerste fase gaat het niet om die ene volledig uitgewerkte optimale oplossing, maar om het bepalen van kansrijke oplossingsrichtingen en het komen tot onderzoeksvoorstellen.

Na de uitvraag in augustus 2013 zijn er zestien experts uit het COB-netwerk aangesteld. Op 30 september 2013 kwamen zij voor het eerst bij elkaar, onder leiding van COB-coördinator Brenda Berkhout. Tijdens de startbijeenkomst is er direct inhoudelijk naar het probleem gekeken. Alex Kirstein van de Coentunnel Company vertelde over hun onderzoek naar de zinkvoegconstructies in de Eerste Coentunnel en Leo Leeuw, voormalig uitvoeringsingenieur bij Rijkswaterstaat en nu adviseur bij Nebest, gaf een presentatie over zijn onderzoek naar dilatatievoegen (zie rapport rechts).

Vervolgens is bepaald waar het huidige onderzoek zich op moest richten: het stoppen van bestaande lekkages en het voorkomen van nieuwe. Hiervoor is meer inzicht in het aantastingsmechanisme nodig en moet er een analyse komen van incidenten. Wanneer is interventie noodzakelijk? Welke monitorings- en inspectietechnieken zijn geschikt? Het afdichtingsysteem moet worden bekeken, evenals de wapening van de tandconstructie.

Het doel was niet om alle voegen in alle tunnels in beeld te hebben, maar te kijken naar de tunnels waarvan er informatie binnen de werkgroep beschikbaar is. Dit waren bijvoorbeeld tekeningen, details en conserveringsinformatie. De leden hebben deze informatie meegenomen naar de werksessies en met elkaar doorgenomen. Daarnaast hebben de werkgroepleden contact opgenomen met collega’s om extra informatie in te winnen.

Na diverse werksessies in 2013 en 2014 is op 10 december 2014 de rapportage Instandhouding zinkvoegen opgeleverd. Het rapport omvat de probleemanalyse, oplossingen of oplossingsrichtingen op basis van de beschikbare kennis en voorstellen voor nader onderzoek.

Praktijkonderzoek

Ter aanvulling op het rapport uit 2014 is extra endoscopisch onderzoek uitgevoerd bij vier tunnels: de Drechttunnel, de Noordtunnel, de Kiltunnel en de Vlaketunnel. In februari 2015 zijn de resultaten hiervan opgeleverd. Op basis hiervan is de commissie verdergegaan met praktijkonderzoek. Zo is een aantal voegen van de Heinenoordtunnel onderzocht. De onderzoeksresultaten bevestigen het beeld dat tijdens de eerdere onderzoeken in de Drecht-, Noord, Vlake- en Kiltunnel verkregen is. Daarbij is onder andere in alle voegen water aangetroffen dat van de weg afkomstig is. In een aantal gevallen is corrosie op de klemlijsten en bouten van de klemverbinding waargenomen. In de Kiltunnel is bij één bout een forse staalafname gemeten, waarbij zowel vóór als achter de klemstrip onderzoek is verricht. Vraag is nu in hoeverre hier sprake is van een probleem. Functioneert het Gina-profiel nog en zo ja, voor hoe lang? Hoeveel staalafname is toelaatbaar? Zijn we in staat om bouten en klemlijsten te vervangen?

Op 9 oktober 2015 heeft Nebest, samen met RWS, endoscopisch onderzoek uitgevoerd in de Kiltunnel in Dordrecht. (Foto: COB)

Deelnemers

Klik op het bedrijfslogo voor de deelnemende personen

BAM Infra

Locatie: Gouda, H.J. Nederhorststraat 1
Nhut Nguyen, rol: Lid

BESIX S.A.

Locatie: Brussel, Avenue des Communautés 100
Jan van Steirteghem, rol: Lid

COB

Locatie: Delft, Van der Burghweg 1
, rol: Begeleider/Facilitator

DIMCO

Locatie: Brussel, Herrmann-Debrouxlaan 42
Lode Franken, rol: Lid

DIMCO bv

Locatie: Dordrecht, Kilkade 2
Hans Mortier, rol: Lid
Ruben van Montfort, rol: Secretaris

Elumint

Locatie: Zoetermeer, Lenastroom 3
Harry de Haan, rol: Lid

Gemeente Rotterdam Stadsontwikkeling

Locatie: Rotterdam, Wilhelminakade 179
Kees Blom, rol: Lid

Havenbedrijf Rotterdam N.V.

Locatie: Rotterdam, Wilhelminakade 909
Egbert van der Wal, rol: Lid

MH Poly Consultants & Engineers bv

Locatie: Bergen Op Zoom, Peter Vineloolaan 46b
Bard Louis, rol: Lid

Mobilis TBI infra

Locatie: Apeldoorn, Landdrostlaan 49
Gerard van den Berg, rol: Lid

Movares

Locatie: Utrecht, Daalseplein 100
Jan Jonker, rol: Lid
Peter Hoogen, rol: Lid

Nebest B.V.

Locatie: Vianen, Marconiweg 2
Jan Kloosterman, rol: Secretaris
Leo Leeuw, rol: Lid

ProRail

Locatie: Rotterdam, Delfseplein 27j
Edwin Westerduijn, rol: Lid

Rijkswaterstaat GPO Grote Projecten en Onderhoud

Locatie: Utrecht, Griffioenlaan 2
Ad Nieuwenhuyzen, rol: Lid
Carolien Nieuwland, rol: Lid
Gerrit Wolsink, rol: Lid
Harry Dekker, rol: Opdrachtgever
Martijn Blom, rol: Lid

Rijkswaterstaat PPO Programma's, Projecten en Onderhoud

Locatie: Haarlem, Toekanweg 7
Stephan van der Horst, rol: Lid
Theo van Maris, rol: Lid

Royal HaskoningDHV

Locatie: Amersfoort, Laan 1914 35
René Kuiper, rol: Lid

Strukton Immersion Projects B.V.

Locatie: Utrecht, Westkanaaldijk 2
Nico Vink, rol: Lid

TEC Tunnel Engineering Consultants

Locatie: Amersfoort, Laan 1914 No 35
Hans de Wit, rol: Lid

Trelleborg Ridderkerk B.V.

Locatie: Ridderkerk, Verlengde Kerkweg 15
Frans Melchers, rol: Lid
Joel van Stee, rol: Lid

TU Delft Faculteit Civiele Techniek & Geowetenschappen

Locatie: Delft, Stevinweg 1
Wout Broere, rol: Lid

Van Hattum en Blankevoort

Locatie: Vianen, Lange Dreef 13
Sallo van der Woude, rol: Lid

Wegschap Tunnel Dordtse Kil

Locatie: Dordrecht, Provincialeweg 43-nr 102
Arie Bras, rol: Lid

Witteveen + Bos Raadgevende Ingenieurs

Locatie: Rotterdam, Blaak 16
Brenda Berkhout, rol: Voorzitter

Een goede risico-inventarisatie vooraf en vervolgens een intensieve monitoring. Die combinatie zorgde ervoor dat de complexe verbouwing van het voormalige Sweelinck Conservatorium tot vijfsterrenhotel zonder noemenswaardige problemen verliep. Geotechnisch expert Almer van der Stoel van CRUX Engineering en Martijn Snel van projectontwikkelaar IQNN Vastgoed blikken terug op een geslaagde samenwerking. 

Wie het Conservatoriumhotel binnengaat aan de Amsterdamse Van Baerlestraat kan zich moeilijk voorstellen dat dit gebouw onlangs nog werd bevolkt door muziekstudenten. Alleen de mobile bij de entree, gemaakt van een groot aantal violen, verwijst nog naar de vorige gebruiker van het pand. De metamorfose van het gebouw is het resultaat van een ingrijpende verbouwing die ruim drie jaar duurde. 

Uitdagend
“Toen wij door constructeur Van Rossum bij het project werden betrokken, werd snel duidelijk dat het geotechnisch uitdagend zou worden”, vertelt Van der Stoel. “De plannen voorzagen onder andere in de bouw van een tweeënhalfl aags kelder op de voormalige binnenplaats. Voor de bouwkuip hiervan moesten er damwanden op ongeveer een halve meter vanaf de gevel worden geplaatst, terwijl het diepste deel van de bouwkuip moest worden ontgraven tot bijna elf meter beneden NAP. En dat allemaal bij een historisch pand uit 1898, gefundeerd op houten palen, in het hartje van de binnenstad met in de directe omgeving allerlei kwetsbare gebouwen. En dan ook nog eens een pand vol monumentale details die niet beschadigd mochten raken.”

De zorgen van CRUX betroffen vooral de eventuele afname van de draagkracht van de houten palen door het ontgraven van de bouwkuip. Van der Stoel: “Bij het weggraven van grond uit een bouwkuip buigen de damwanden uit. In dit geval leidde dat ertoe dat de grond onder het pand zou ontspannen. Daardoor zouden de palen minder weerstand ondervinden en kunnen verzakken. Wat vervolgens weer tot vervormingen van het gebouw zou kunnen leiden met ongewenste schade tot gevolg.”

Voor de bouw van de kelder op de voormalige binnenplaats zijn twee bouwkuipen gemaakt, een diepe voor het deel van de kelder waarin onder andere een zwembad zit en een ondiepe voor het deel waarin zich de parkeergarage bevindt. De damwanden voor de bouwkuipen zijn hydraulisch in de bodem gedrukt. De diepe kuip is grotendeels nat ontgraven tot 10,9 meter beneden NAP, waarna een vloer van onderwaterbeton is gestort. Nadat het diepe deel van de kelder gereed was, is de ondiepe bouwkuip droog ontgraven. In beide bouwkuipen is met twee stempellagen gewerkt. (Foto: CRUX)

Risicoanalyse

Van der Stoel vervolgt: “Om tot een goed ontwerp van de bouwkuip te komen en de invloed van de ontgraving nauwkeurig in beeld te krijgen, hebben we de bouwkuip gemodelleerd met het eindige elementenmodel Plaxis. Vervolgens hebben we een risicoanalyse gedaan en hebben we de maximaal toelaatbare horizontale en verticale verplaatsingen berekend. Ook hebben we, voorafgaand aan de bouw, een uitgebreid monitoringplan opgesteld. Hierin hebben we alle metingen opgenomen, maar ook de grens- en alarmwaarden en de te nemen maatregelen bij overschrijdingen van de grenswaarden.“

“Als directievoerder waren wij blij met de uitgebreide monitoring”, vertelt Snel. “In combinatie met de van tevoren vastgestelde grenswaarden, was het steeds zonneklaar wanneer we moesten ingrijpen. Toen we de ondiepe bouwkuip aan het ontgraven waren, verzakte het pand ernaast ineens fors. We hebben de werkzaamheden direct stilgelegd en zijn de fundering van dit pand gaan onderzoeken. Deze bleek minder goed dan we op grond van de oorspronkelijke bouwtekeningen verwachtten. Op basis van nieuwe berekeningen hebben we vervolgens besloten om de grond in stroken weg te graven, extra vijzels te plaatsen en deze voor te spannen. Dat bleek afdoende om verdere verzakkingen te voorkomen.”

Snel: “Door de metingen zagen we ook andere processen. Voor het funderingsonderzoek bij het buurpand moesten we het grondwater tijdelijk verlagen. Terwijl we dat deden zagen we het pand verder zakken. Maar we zagen ook dat het pand weer omhoog kwam toen het grondwater weer terugging naar het eerdere peil.”

“Richting de aannemer was de monitoring eveneens waardevol”, aldus Van der Stoel. “De aannemer vond het in eerste instantie niet nodig om de diepe bouwkuip in stroken te ontgraven. Om hem te overtuigen hebben we toen aan de hand van onze metingen laten zien hoe ver de damwand al uitboog bij het graven van de eerste sleuf.”

Calamiteit

“De diepe bouwkuip hebben we nat ontgraven”, vertelt Snel. ”Toen de kuip op diepte was en we het water begonnen weg te pompen, zagen we dat het bovenste stempelframe was weggezakt. Ook bij deze calamiteit bewees de monitoring zijn waarde. Het droogmalen hebben we onmiddellijk gestopt. Om te kunnen inspecteren wat er aan de hand was, moesten we het waterpeil met anderhalve meter verlagen. Voordat we dat hebben gedaan, heeft CRUX met het Plaxismodel berekend of dat kon zonder een onacceptabele uitbuiging van de damwand. Vervolgens hebben we de voorspellingskracht van het model getoetst. Daarvoor hebben we aan de hand van de monitoringsgegevens gekeken of de damwand zich tot tot dan toe had gedragen zoals verwacht. Dat bleek het geval. Na de inspectie hebben we de kuip weer gevuld met water en hebben duikers het stempelframe gerepareerd.”

Recept

Op de vraag wat het recept is voor een probleemloos project onder geotechnisch lastige omstandigheden, blijven Snel en Van der Stoel even stil. Dan zegt Snel: “Goede en deskundige partijen vinden, is niet zo ingewikkeld. Veel lastiger is het om je opdrachtgever ervan te overtuigen dat georisicomanagement cruciaal is bij dit soort projecten.” Van der Stoel beaamt dit: “Het is een luxe om voor een opdrachtgever te werken die inziet dat georisicomanagement loont. Verder is het belangrijk dat de toezichthouder verstand heeft van bouwputten en niet alleen van procesvoering of utiliteitsbouw. Daarnaast zijn onderling vertrouwen en goede communicatie essentiële randvoorwaarden.”

Willem van Oranjetunnel

In 2009 startten in Delft de werkzaamheden voor het project Spoorzone Delft. Het spoorviaduct dat langs de oude binnenstad liep, is vervangen door een spoortunnel. Deze tunnel, de Willem van Oranjetunnel, is in april 2015 officieel geopend. De tunnel heeft twee tunnelbuizen en is geschikt voor vier sporen. Inclusief toeritten is hij 2.300 meter lang. Onderdeel van de tunnel is een nieuw ondergronds station.

(Foto: Ronald Tilleman)

Aanleiding

Tot de bouw van de tunnel is om verschillende redenen besloten. Het spoorviaduct was met zijn twee sporen een flessenhals op het verder viersporige tracé tussen Rotterdam en Amsterdam en was niet berekend op de verwachte groei van het treinverkeer. Daarnaast veroorzaakten de circa 350 treinen die iedere dag over het viaduct reden veel geluidsoverlast voor omwonenden en vormde de spoorlijn dwars door de stad een barrière tussen de verschillende wijken. Verder was het bestaande station te krap en voldeed het niet meer aan de eisen van de tijd.

(Foto: spoorzonedelft.nl)

Bouwmethode

Voor de bouw van de tunnel is gekozen voor ‘proven technology’. De aannemerscombinatie heeft de spoortunnel voor het grootste deel gebouwd met de wanden-dakmethode in combinatie met diepwanden. Deze methode is trillings- en geluidsarm en kan op relatief korte afstand van bestaande bebouwing worden toegepast. Met een speciale grijper wordt een sleuf gegraven. Tijdens het graven zorgt een steunvloeistof ervoor dat de sleuf niet instort. Als de sleuf klaar is gaat er wapening in en wordt hij volgestort met beton. Hierbij duwt het beton de steunvloeistof uit de sleuf. Zodra de wanden klaar zijn wordt hiertussen een dak gemaakt. Vervolgens kan de grond onder het dak worden ontgraven en de tunnelconstructie worden afgemaakt, terwijl de hinder bovengronds minimaal is.
Alleen bij de tunnelmonden en kruisingen met open water heeft de aannemerscombinatie een andere bouwmethode toegepast. Hier is met damwanden een bouwkuip gemaakt, waarin vervolgens de tunnel is gebouwd. Om eventuele effecten van de bouwwerkzaamheden op de omgeving exact waar te nemen – en op tijd maatregelen te kunnen treffen – heeft de aannemer samen met ProRail een uitgebreid monitoringprogramma uitgevoerd.

Innovatief

Bij het bouwproject zijn ook innovatieve technieken toegepast. Met crosshole sonic logging zijn bijvoorbeeld defecten in diepwanden opgespoord. Dit onderzoek vond plaats in kader van het Geo-Impuls/TU Delft-promotieonderzoek van Rodriaan Spruit. Crosshole sonic logging maakt gebruik van het principe dat een geluidsgolf die door beton gaat, met een andere snelheid beweegt dan wanneer hij door bentoniet of een holle ruimte gaat. Door bij diepwanden aan weerszijden van een voeg zenders te hangen die een hoogfrequent signaal uitzenden dan wel ontvangen, kun je de looptijd en de sterkte van de signalen dóór de voeg vastleggen. Met die gegevens kun je vervolgens de kwaliteit van de voeg over de gehele lengte van de diepwand bepalen. In Delft is met deze techniek met succes een zwakke plek in een diepwand gedetecteerd.

Ondergronds station

Het nieuwe ondergrondse station ligt bovenop de tunnel, vlak naast het bestaande station dat op termijn een andere bestemming krijgt. De stationshal op de begane grond is onderdeel van het nieuwe stadskantoor. Direct naast het station, onder het stationsplein, is een ondergrondse fietsenstalling voor 5.000 fietsen en iets verderop aan de Phoenixstraat een ondergrondse parkeergarage voor 650 auto’s. Het stationsplein is ingericht als een vervoersknooppunt, waar reizigers eenvoudig kunnen overstappen op tram, bus en taxi.

Het oude en het nieuwe station. (Foto: Ronald Tilleman)

Herontwikkelen

De gemeente Delft heeft de bouw van de spoortunnel aangegrepen om het hele gebied rond de spoorlijn te herontwikkelen. Hiervoor heeft ze een stimuleringssubsidie gekregen in het kader van de voorbeeldprojecten Intensief Ruimtegebruik. De grond die vrijkomt als het spoor naar de ondergrond is verplaatst, gaat Delft onder andere gebruiken voor de aanleg van een stadspark met veel water en de bouw van woningen en kantoren. De Spaanse architect en stedenbouwkundige Joan Busquets heeft voor het gebied een stedenbouwkundige visie ontwikkeld.

Interactief met bodeminformatie

Wie de haalbaarheid en opbrengst van een nieuwe aardwarmte-installatie wil weten, moet nu een heel rijtje informatiebronnen raadplegen. In veel gevallen is één blik in de BodemTool straks voldoende. De onlineapplicatie die in opdracht van SKB is gemaakt, combineert bodem- en omgevingsinformatie uit verschillende bronnen, maakt er een 3D-kaart van en laat zien wat de effecten van een maatregel zijn

SKB, voluit Stichting Kennisontwikkeling en Kennisoverdracht Bodem, beschikt over een schat aan informatie over de bodem. Via de website Soilpedia wordt een deel daarvan ontsloten, maar veel diepgaande achtergrondinformatie wordt nooit door de lezers bereikt. Een consortium bestaande uit Ambient/RO2 en StrateGis kreeg daarom de opdracht een slim systeem te ontwikkelen dat bodeminformatie op een geïntegreerde en gebruiksvriendelijke manier toegankelijk maakt. En zo ontstond de BodemTool.

David van den Burg, partner bij Ambient/RO2: “De BodemTool is inmiddels veel méér dan een toegangspoort naar kennis van SKB. Informatie over de ondergrond staat op allerlei verschillende plekken. Het Kadaster beheert bijvoorbeeld gegevens over de bebouwde omgeving, het DINOLoket bevat data over grondlagen, gemeenten hebben informatie over kabels en leidingen, en SKB heeft achtergrondinformatie over WKO-installaties. Dat heeft natuurlijk zijn redenen, maar een eindgebruiker wil deze informatie gebundeld bekijken. De BodemTool biedt deze mogelijkheid.”

Interactief

De gebruiker begint met het kiezen van een gebied. Momenteel zijn er voor Rotterdam Centrum en Leidschendam de meeste data beschikbaar, maar de gebruiker is vrij om zelf een gebied binnen Nederland te selecteren. Vervolgens verschijnen er een 3D-kaart en een toolbox. Met de visualisatiegereedschappen kun je informatie zichtbaar en onzichtbaar maken: wel of geen bebouwing, wel of geen kabels en leidingen, wel of geen bodemverontreiniging, etc. Ook bestemmingsplannen staan erin, evenals drinkwatergebieden, archeologie en ondergrondse bouwwerken.

Screenshot van de BodemTool. (Beeld: Ambient/RO2)

“De BodemTool bevat voor iedere locatie in ieder geval informatie uit het Kadaster, het DINOLoket, de Basisregistratie adressen en gebouwen (BAG) en . De gebruiker krijgt zo inzicht in de stand van zaken, zowel fysiek als beleidsmatig”, vertelt Van den Burg.

Tot zover lijkt de BodemTool op de Atlas Leefomgeving, een website die milieu- en gezondheidsinformatie geïntegreerd aanbiedt. Het grote verschil is de interactiviteit. Waar de gebruiker bij de Atlas alleen informatie kan uitlezen, kan de BodemTool ook reageren op input van de gebruiker. Van den Burg: “Je kunt in de BodemTool maatregelen nemen en kijken wat het effect daarvan is. Wanneer je bijvoorbeeld een waterberging of parkeergarage een gebied in sleept, geeft het systeem aan in hoeverre er conflicten ontstaan en welke impact de maatregel heeft. Er wordt gekeken naar effecten binnen de vijf P’s: people, planet, profit, project en public. Je ziet dus wat de maatregel oplevert qua geld, maar ook wat de consequenties zijn voor de bewoners en het milieu. Uiteindelijk zal dit een belangrijke functionaliteit worden, want als een gemeente bijvoorbeeld een windmolen wil plaatsen, dan kost een haalbaarheidsonderzoek nu veel tijd en geld. Met de BodemTool zou je binnen een dag een vrij goed beeld hebben van geschikte locaties, de knelpunten en de kosten en baten van een dergelijke maatregel. Hiervoor werken we echter nog aan de gebruiksvriendelijkheid.”

“De meeste gebruikers zijn nu goed in staat om met de tool een gebied te onderzoeken. Je merkt daarbij verschil tussen doelgroepen: beleidsmedewerkers ruimtelijke ordening vinden de informatie bijvoorbeeld nuttig en compleet, maar vrij complex, terwijl bodemspecialisten zeggen dat het systeem niet gedetailleerd genoeg is. Naar ons idee hebben we het dus precies goed gedaan,” meent Van den Burg, “maar het kan natuurlijk altijd beter.”

Denkwerk
De BodemTool bestaat grofweg uit twee delen: de interface waarin de gebruiker werkt (de website) en een systeem achter de schermen dat alle gegevens aan elkaar knoopt en er zinnige informatie van maakt. Van den Burg: “Hiervoor worden bestaande modellen gebruikt, waarin we de kennis van SKB hebben verweven. Ook TNO heeft meegewerkt. Zij hebben binnen hun concept Urban Strategy rekenmodellen ontwikkeld om de gevolgen van planologische ingrepen inzichtelijk te maken.”

In het kader rechtsboven is te zien wat de consequenties zijn van het installeren van een hoge temperatuuropslag op deze locatie. (Beeld: Ambient/RO2)

“In Dordrecht is de tool toegepast in een praktijkproject. De gemeente is daar op zoek naar een optimaal tracé voor een mogelijke spoortunnel. Met behulp van de BodemTool kon de gemeente snel zien wat er op verschillende locaties mogelijk is en welke effecten ondergronds bouwen daar zou hebben. Het tracé dat je zo bepaalt, moet je natuurlijk nog nader onderzoeken, maar je hebt vast een goede indicatie”, aldus Van den Burg.

Wenkend perspectief

Omdat de tool nog in ontwikkeling is, zijn SKB en de makers tot nu toe terughoudend geweest met promotie. Er worden kleine bijeenkomsten georganiseerd voor de beoogde gebruikers om te vertellen wat er allemaal mee kan. “Ook vragen we waar nog behoefte aan is, zodat we daar in volgende versies op in kunnen spelen”, zegt Van den Burg. Ondertussen kan iedereen de BodemTool bekijken en gebruiken via www.bodemtool.nl.

Van den Burg ziet de applicatie nu vooral als een ‘wenkend perspectief’: “De basis van het systeem is er: de data zitten erin, er is een methodiek om meer data toe te voegen en er zijn modellen die gegevens aan elkaar koppelen en als informatie ontsluiten. We zijn in principe in staat om binnen een halve dag de relevante data van een nieuwe bronhouder (zoals gemeente, waterschap, provincie) in te lezen en correct te integreren. Ook kun je al spelen met maatregelen. De tool is daardoor al heel bruikbaar in een verkennende fase van een project; het maakt de communicatie gemakkelijker. Maar uiteindelijk zou de tool gebruikt kunnen worden bij het opstellen van (ondergrondse) structuurvisies of het (her)inrichten van een gebied. Dat zie ik over een aantal jaar gebeuren.”

Beheren, meten en optimaliseren

Vanuit het Network Operation Center (NOC) in Oss beheert SPIE allerlei telecommunicatienetwerken. Operators bewaken de netwerken dag en nacht en sturen monteurs op pad bij (dreigende) storingen. Volgens Jacco Saaman, Business Development & Innovation, biedt het NOC ook kansen voor live monitoring van installaties en procesoptimalisaties op basis van big data analyses.

“Met de ontwikkeling van zogeheten smart cities wordt supersnelle glasvezelinfrastructuur steeds belangrijker. Dynamische route-informatiesystemen, intelligente openbare verlichting, actuele reisinformatie bij haltes van openbaar vervoer, energiemonitoringsystemen en systemen voor het op afstand bewaken en bedienen van sluizen, bruggen en tunnels vragen om snel en betrouwbaar dataverkeer. Daar zorgen wij voor door de netwerken continu in de gaten te houden en direct in te grijpen als wij een verminderde werking of storing zien of een storingsmelding ontvangen van een klant”, vertelt Ad Schippers, manager van de businessunit Network Solutions van SPIE.

In het NOC in Oss zitten circa acht operators achter bureaus met drie beeldschermen. Tegenover hen staat een paneel met enorme schermen, dat vrijwel de gehele breedte van de ruimte inneemt. Van hieruit beheren zij in ploegendiensten vierentwintig uur per dag en zeven dagen per week voor diverse klanten kabelnetwerken voor data-, telecommunicatie en kabeltelevisie. Ook houden ze de gas-, water- en elektriciteitsnetwerken van diverse recreatieparken in de gaten.

Het Network Operation Center (NOC) in Oss. (Foto: SPIE)

Nieuwe kansen

Naast het beheren en operationeel houden van de netwerken zelf, monitort SPIE vanuit het NOC ook steeds vaker actieve netwerkapparatuur. Schippers: “In steeds meer netwerkapparatuur zijn alarmgrenzen ingebouwd die het mogelijk maken om te zien of een apparaat het einde van zijn levensduur nadert. Als we dat zien, vervangen we de apparatuur preventief om uitval te voorkomen. Op een vergelijkbare wijze monitoren we ook steeds vaker installaties die aan het netwerk zijn verbonden en zijn voorzien van sensoren. Door die sensoren kunnen we op afstand vaststellen hoe ze functioneren.”

Zijn collega Saaman vult aan: “De mogelijkheid om installaties live en op afstand te volgen, biedt veel nieuwe kansen. Neem de ventilatoren in een verkeerstunnel. In protocollen is vastgelegd onder welke omstandigheden ze inschakelen, bijvoorbeeld als de snelheidsverschillen tussen twee rijbanen boven een bepaalde waarde komen. In de praktijk blijken de regelparameters zo scherp geformuleerd, dat de ventilatoren vaak aangaan. Dat kost veel energie. Ik ben ervan overtuigd dat we dit soort regelingen op termijn kunnen verbeteren als we vanuit een NOC alle operationele data verzamelen en analyseren.”

Cyber security

Als voorbereiding op deze nieuwe activiteit werkt SPIE onder andere samen met ECN en TNO. Deze kennisinstellingen ontwikkelen slimme algoritmes om tot verbetervoorstellen te komen. Ook heeft SPIE al een aantal experts aangetrokken die over een helikopterview beschikken en goed zijn in het ontleden van vraagstukken en het vinden van logische verbanden. Vaardigheden die in de ogen van Saaman vereist zijn om big data goed te kunnen analyseren. Toch is het bedrijf volgens hem nog niet helemaal klaar voor optimalisaties op basis van big data analyses: “Als je gaat werken met data die voor de bediening van infrastructuur wordt gebruikt, moet je de cyber security ontzettend goed hebben geregeld. We zijn op dit gebied al een heel eind op weg –we zijn bijvoorbeeld hard bezig met de ISO-27001-certificering – maar moeten nog wel een aantal stappen zetten.”

Openbare netwerken

Saaman vervolgt: “Vooral operationele hacking moet je te allen tijde weten te voorkomen. Stel je het nachtmerriescenario maar voor dat een hacker een brug openzet zonder de stoplichten te activeren en de slagbomen neer te laten. De vrees voor dit soort gebeurtenissen is onder andere de reden dat Rijkswaterstaat een eigen glasvezelnetwerk heeft voor de bediening van al zijn infrastructuur en installaties. Toch verwacht ik dat er een moment komt waarop organisaties als Rijkswaterstaat gebruik gaan maken van openbare netwerken. Niet alleen omdat specialisten op het gebied van cyber security schaars zijn, maar ook omdat netwerkbeheer en data-analyse niet tot hun kernactiviteiten behoren. Door deze activiteiten bij een gespecialiseerde partij onder te brengen, kunnen ze zich volledig richten op de dingen waar ze goed in zijn. En het bijkomende voordeel is dat ze niet hoeven te investeren en geen personeel in dienst hoeven te nemen voor het dag en nacht bewaken van het netwerk.”

Slimme kabels

Met nieuwe technieken en sensoren verandert een kabel van transportmiddel naar informatiebron. Zo kan een glasvezelkabel dienst doen als thermometer of deformaties doorgeven. Fugro ontwikkelde een systeem waarbij tot zestien sensoren via glasvezel verbonden kunnen worden met een optisch meetapparaat, een zogeheten interrogator. Op die manier kunnen voor lange tijd trillingen, hoekverdraaiingen (kanteling), buiging (microrek), geluid en druk worden gemeten, wat inzicht geeft in de levensduur van een constructie.
>> Lees artikel ‘Veilige constructies door slimme glasvezelsensoren’ (pdf, 1MB)

Kennisbank

Artwork: "Library" by Lori Nix | www.lorinix.net

Dit was de Onderbreking Meten is weten

Bekijk een ander koffietafelboek: