Loading...

De Onderbreking

Meten is weten

Meten is weten

3D-scan brengt vervormingen snel in beeld

Delft, Willem van Oranjetunnel

Aantoonbare veiligheid met standaard ICT proces

Veiligheid aantonen bij niet-rijkstunnels

Afstudeeronderzoek spreiding grondverplaatsing TBM-schild

Als we dat hadden geweten

Maastricht, A2 Maastricht

SOS: Meer meten met infrarood

Kennisbank

Meten is weten

Ondergronds bouwen is teamwerk. Vernieuwingen zijn succesvol als we samen vraagstukken uitpluizen en doelen stellen. Tussen ‘waar gaat het om’, ‘wat gaan we doen’ en ‘wat zijn de consequenties daarvan’ moeten we flink verzamelen, meten en bepalen. 

In de wereld van de civiele techniek en ruimtelijke ordening wordt om de meest uiteenlopende redenen gemeten. Meten is onlosmakelijk verbonden met kennisontwikkeling. We verzamelen gegevens om voorspellingen te doen, of om ze juist te controleren. De betekenis van data geeft zich echter niet zomaar prijs. We hebben analyses en interpretaties nodig om de datastroom te duiden. Ook dát hoort bij meten.

3D-scan brengt vervormingen snel in beeld

Rijkswaterstaat voert regelmatig inspecties en deformatiemetingen uit om de onderhoudstoestand en vervormingen van afgezonken tunnels te volgen en tijdig te kunnen ingrijpen bij potentiële gebreken. Samen met adviesbureau Arcadis is onderzocht of deze monitoring verder kan worden verbeterd. Daartoe is onder andere als pilot een 3D-scan gemaakt van de Kiltunnel.

“De meeste Nederlandse zinktunnels zijn op staal gefundeerd”, vertelt Harry Dekker, coördinerend adviseur Tunnels bij Rijkswaterstaat. “Concreet betekent dit dat de verschillende elementen waaruit deze tunnels zijn opgebouwd, op een relatief losgepakte zandlaag liggen. Daardoor zijn afgezonken tunnels gevoelig voor zettingen. Als deze zettingen groot en ongelijkmatig zijn, ontstaan er spanningen in de tunnelconstructie die tot scheurvorming en lekkage kunnen leiden. Daarom ligt de nadruk bij onze inspecties op het meten van vervormingen.”

“Onlangs heeft Arcadis een analyse gemaakt van de meetsystemen voor het monitoren van de deformaties van afgezonken tunnels. Daaruit bleek dat we in diverse afgezonken tunnels wel periodiek de verplaatsingen van de zinkvoegen meten, maar niet van de tussenliggende mootvoegen (zie kader). Tegelijkertijd blijkt bij tunnels waar de mootvoegen wel worden ingemeten, dat de grootste deformaties vaak juist dáár optreden. Op basis van deze analyse hebben we het advies gekregen om in meerdere tunnels de mootvoegen van meetbouten te voorzien, zodat we voortaan ook deformaties op die plekken kunnen meten. Dat advies volgen we zeker op, maar we weten dan nog niet hoe groot de vervormingen van de mootvoegen zijn sinds het gereedkomen van een tunnel. Inzicht in deze absolute deformaties maakt het mogelijk om per mootvoeg een inschatting te geven van de kans op lekkage of andere mogelijke schades of risico’s.

Nulsituatie

Dekker vervolgt: “Voor de absolute deformaties zouden we van iedere tunnel de nulsituatie moeten kennen. Dat is helaas niet zo. Van de meeste tunnels zijn de zettingsmetingen pas een jaar na oplevering gestart – waarbij de mootvoegen zelden zijn meegenomen – terwijl je ervan uit kunt gaan dat in de eerste maanden na het afzinken, onderspoelen en aanvullen van de zinksleuf al forse zettingen optreden.”

“Om te onderzoeken of we de vervorming van de mootvoegen toch kunnen kwantificeren, ook als er in het verleden geen metingen ter plaatse zijn uitgevoerd, hebben we met Arcadis een pilot gedaan met een 3D-scan. De pilot hebben we uitgevoerd bij de Kiltunnel, omdat dit een van de weinige afgezonken tunnels is waar een goede nulmeting is gedaan en vervolgens ook regelmatig zettingsmetingen zijn gedaan bij de mootvoegen. Dat biedt de mogelijkheid om de uitkomsten van de pilot te vergelijken met de werkelijk opgetreden zettingen.”

Nauwkeurig ingemeten

“Voor de proef hebben we de huidige geometrie van de tunnel met een 3D-scan nauwkeurig ingemeten”, legt senior-projectleider Joost Visschedijk van Arcadis uit. “Ook hebben we op basis van de ontwerptekeningen een 3D-model van de tunnel gemaakt om na te gaan of ontwerptekeningen te gebruiken zijn om de zogeheten ‘as built’ situatie vast te stellen. Daarvoor hebben we de actuele metingen vergeleken met het model. Daaruit bleek snel dat de tunnel niet op de hoogte is gebouwd die op de tekeningen is aangegeven. Zo lag het model op sommige plekken lager dan de gescande hoogte. Dat zou betekenen dat de tunnel is in de loop van de tijd is gestegen, terwijl we uit de zettingsmetingen weten dat de constructie op een aantal plekken fors is verzakt.”

Als volgende stap heeft Arcadis gekeken of je de relatieve vervormingen van mootvoegen kunt bepalen als je alleen de opgetreden zettingen van de zinkvoegen kent. Daarvoor hebben de onderzoekers gewerkt met een referentievlak. Dit vlak ligt met de hoekpunten boven de meetbouten in de zinkvoegen, waarbij de hoogte van elk hoekpunt afhangt van de gemeten zetting. Hierdoor kan het referentievlak exact op de hoogte worden gebracht van de meetbouten direct na de bouw. Visschedijk: “Om de vervormingen over de hele lengte van de constructie vast te stellen, hebben we de verschillen tussen het referentievlak en de scan bepaald. Deze verschillen laten zien hoe de constructie over de gehele lengte is vervormd. De vervormingen van de mootvoegen ten opzichte van het referentievlak die met de scan zijn bepaald, komen goed overeen met de eerder gemeten deformaties.”

Waardevol

“Natuurlijk vermoedden we al dat je de nulsituatie achteraf niet betrouwbaar kunt reconstrueren”, stelt Dekker. “Dat betekent dat je de absolute zettingen van de mootvoegen niet kunt achterhalen. We weten nu echter wel dat je de relatieve vervormingen van de mootvoegen met een 3D-scan snel en goed kunt bepalen. Die uitkomst betekent niet dat we binnenkort alle oude zinktunnels gaan inscannen. Hebben we echter het idee dat een mootvoeg beschadigd is, met lekkage als gevolg, dan kunnen we een 3D-scan laten maken om de relatieve vervormingen goed in beeld te brengen.”

“Vervormingen van mootvoegen zijn een serieus probleem: we denken dat lekkages bij afgezonken tunnels vrijwel altijd het gevolg zijn van een beschadiging van een mootvoeg. Daarom hebben we dit probleem ook door TU Delft en TNO laten onderzoeken. Uit numerieke berekeningen blijkt dat de kraagconstructie inderdaad zodanig kan beschadigen dat er een scheur ontstaat die tot lekkage leidt.”

“Dat de meeste tunnels een beetje lekken is al lang bekend en in de praktijk goed te beheersen, maar we willen wel graag weten of lekken op termijn steeds groter worden. En als dat zo is, hoe we ze dan afdoende kunnen repareren. Een aantal zinktunnels is inmiddels bijna vijftig jaar oud en het is de bedoeling dat ze na een grondige renovatie minimaal nog eens vijftig jaar meegaan.”

Willem van Oranjetunnel

In 2009 startten in Delft de werkzaamheden voor het project Spoorzone Delft. Het spoorviaduct dat langs de oude binnenstad liep, is vervangen door een spoortunnel. Deze tunnel, de Willem van Oranjetunnel, is in april 2015 officieel geopend. De tunnel heeft twee tunnelbuizen en is geschikt voor vier sporen. Inclusief toeritten is hij 2.300 meter lang. Onderdeel van de tunnel is een nieuw ondergronds station.

(Foto: Ronald Tilleman)

Aanleiding

Tot de bouw van de tunnel is om verschillende redenen besloten. Het spoorviaduct was met zijn twee sporen een flessenhals op het verder viersporige tracé tussen Rotterdam en Amsterdam en was niet berekend op de verwachte groei van het treinverkeer. Daarnaast veroorzaakten de circa 350 treinen die iedere dag over het viaduct reden veel geluidsoverlast voor omwonenden en vormde de spoorlijn dwars door de stad een barrière tussen de verschillende wijken. Verder was het bestaande station te krap en voldeed het niet meer aan de eisen van de tijd.

(Foto: spoorzonedelft.nl)

Bouwmethode

Voor de bouw van de tunnel is gekozen voor ‘proven technology’. De aannemerscombinatie heeft de spoortunnel voor het grootste deel gebouwd met de wanden-dakmethode in combinatie met diepwanden. Deze methode is trillings- en geluidsarm en kan op relatief korte afstand van bestaande bebouwing worden toegepast. Met een speciale grijper wordt een sleuf gegraven. Tijdens het graven zorgt een steunvloeistof ervoor dat de sleuf niet instort. Als de sleuf klaar is gaat er wapening in en wordt hij volgestort met beton. Hierbij duwt het beton de steunvloeistof uit de sleuf. Zodra de wanden klaar zijn wordt hiertussen een dak gemaakt. Vervolgens kan de grond onder het dak worden ontgraven en de tunnelconstructie worden afgemaakt, terwijl de hinder bovengronds minimaal is.
Alleen bij de tunnelmonden en kruisingen met open water heeft de aannemerscombinatie een andere bouwmethode toegepast. Hier is met damwanden een bouwkuip gemaakt, waarin vervolgens de tunnel is gebouwd. Om eventuele effecten van de bouwwerkzaamheden op de omgeving exact waar te nemen – en op tijd maatregelen te kunnen treffen – heeft de aannemer samen met ProRail een uitgebreid monitoringprogramma uitgevoerd.

Innovatief

Bij het bouwproject zijn ook innovatieve technieken toegepast. Met crosshole sonic logging zijn bijvoorbeeld defecten in diepwanden opgespoord. Dit onderzoek vond plaats in kader van het Geo-Impuls/TU Delft-promotieonderzoek van Rodriaan Spruit. Crosshole sonic logging maakt gebruik van het principe dat een geluidsgolf die door beton gaat, met een andere snelheid beweegt dan wanneer hij door bentoniet of een holle ruimte gaat. Door bij diepwanden aan weerszijden van een voeg zenders te hangen die een hoogfrequent signaal uitzenden dan wel ontvangen, kun je de looptijd en de sterkte van de signalen dóór de voeg vastleggen. Met die gegevens kun je vervolgens de kwaliteit van de voeg over de gehele lengte van de diepwand bepalen. In Delft is met deze techniek met succes een zwakke plek in een diepwand gedetecteerd.

Ondergronds station

Het nieuwe ondergrondse station ligt bovenop de tunnel, vlak naast het bestaande station dat op termijn een andere bestemming krijgt. De stationshal op de begane grond is onderdeel van het nieuwe stadskantoor. Direct naast het station, onder het stationsplein, is een ondergrondse fietsenstalling voor 5.000 fietsen en iets verderop aan de Phoenixstraat een ondergrondse parkeergarage voor 650 auto’s. Het stationsplein is ingericht als een vervoersknooppunt, waar reizigers eenvoudig kunnen overstappen op tram, bus en taxi.

Het oude en het nieuwe station. (Foto: Ronald Tilleman)

Herontwikkelen

De gemeente Delft heeft de bouw van de spoortunnel aangegrepen om het hele gebied rond de spoorlijn te herontwikkelen. Hiervoor heeft ze een stimuleringssubsidie gekregen in het kader van de voorbeeldprojecten Intensief Ruimtegebruik. De grond die vrijkomt als het spoor naar de ondergrond is verplaatst, gaat Delft onder andere gebruiken voor de aanleg van een stadspark met veel water en de bouw van woningen en kantoren. De Spaanse architect en stedenbouwkundige Joan Busquets heeft voor het gebied een stedenbouwkundige visie ontwikkeld.

Loopt de weg naar aantoonbare tunnelveiligheid via standaardisatie van ICT-processen?

De veiligheid van verkeerssystemen is voor een groot deel afhankelijk van ICT. Dat is zeker bij tunnels het geval. Maar wat als ICT-systemen falen? Wat betekent dat voor de veiligheid? Hoe kun je garanderen en aantonen dat falende ICT-systemen de veiligheid van de tunnelgebruiker niet bedreigen? En is een standaard ICT-proces daarbij de gedroomde oplossing?

Jørgen Heinrich (Movares) stelt dat de nieuwe Landelijke Tunnelstandaard (LTS) de eerste voorzichtige stappen zet richting een gestructureerd proces voor het creëren van veilig werkende software. Er worden echter nog geen standaard processen gevraagd voor het maken, verifiëren en in dienst stellen van software voor tunneltechnische installaties. Als het gaat om de inherente veiligheid van bijvoorbeeld een treinbeveiligingssysteem, draait het altijd om het aantonen van het veilig falen van de hardware en de software. Zeker in de huidige wereld waarin steeds meer software wordt gebruikt om beveiligingssystemen te bouwen, is het aantonen van de veilige en correcte werking van de software cruciaal. Vindt dit nu ook z’n weg naar tunnels? Jørgen Heinrich en Auke Sjoukema (ProRail) praten over nut en noodzaak van een standaard ICT-proces.

Is een standaard proces noodzakelijk om de goede werking van ICT-systemen aan te tonen?

Auke Sjoukema: “Bij ProRail zijn we erachter gekomen dat er ten aanzien van standaards en uniformiteit op het gebied van tunneltechnische installaties verbeteringen noodzakelijk zijn. Ten behoeve van adequaat beheer willen we documenten beter op orde hebben en ervoor zorgen dat tunnels op een uniforme manier bediend en beheerd  worden. Op dit moment kijken we vooral naar processen. De aantoonbaarheid van ICT-systemen is daar wel een onderdeel van, maar staat nu niet boven aan de agenda.”

Jørgen Heinrich: “In de LTS en het nieuwe Ontwerpvoorschrift Tunnels van ProRail worden voorzichtige stappen gezet om ook voor tunnels een gestructureerd proces te creëren. Er wordt gevraagd om een proces dat past binnen de IEC-61508 resp. NEN-EN 50126(de internationale functionele-veiligheidsnormen), of een equivalente oplossing. Dit dient te leiden tot een gestructureerde wijze van het maken, verifiëren en in dienst stellen van de tunnelinstallaties door de opdrachtnemer. Maar de eis betekent ook het nodige voor de opdrachtgever. deze zal namelijk veel strenger moeten toezien op het nakomen van de procesafspraken en het geleverd krijgen van de bewijzen voor correcte en veilige werking. Alleen een proceseis stellen is niet voldoende om een cultuur van veiligheid en aantoonbaarheid te verkrijgen.”

Er wordt kennelijk (nog) niet om zo’n standaard gevraagd. Hoe komt dat?

Jørgen Heinrich: “Er wordt niet expliciet om gevraagd, maar een standaard zou wel een logisch gevolg zijn van de vraag naar aantoonbare beschikbaarheid en veiligheid. Het heeft te maken met volwassenheid van de markt. Je ziet dat er steeds meer op basis van systems engineering wordt gewerkt. Daar volgt uit dat je duidelijke afspraken wilt maken.”

Auke Sjoukema: “Standaardiseren past inderdaad bij de wens om steeds meer te certificeren en valideren. Je moet een bepaalde mate van betrouwbaarheid kunnen aantonen. Daarom sluit ik ook niet uit dat een standaard ICT-proces gevraagd zal gaan worden voor tunneltechnische installaties. Wellicht is er nu nog sprake van onderschatting van het afbreukrisico. Voor treinbeveiligingsystemen zien we een heel strikte normering.  De aanpak bij tunneltechnische installaties is gebaseerd op de certificeringseisen vanuit het Bouwbesluit, onder andere voor brandmeldinstallatie, rookwarmteafvoer en  bluswatervoorziening,  en de Europese eisen voor validatie uit de TSI Safety in Railwaytunnels.”

Wat zou de volgende stap moeten zijn om tot een standaard te komen?

Auke Sjoukema: “Het belang van standaardisatie staat zeker al op de agenda. ProRail heeft nu de interne opdracht om een nieuw treinstilstanddetectiesysteem te ontwikkelen voor de Willemsspoortunnel in Rotterdam. We kijken verder dan alleen die tunnel, door een ‘kookboek’ te ontwikkelen met daarin de receptuur die voor alle tunnels toepasbaar is. Zo komen we tot eenduidige afhandeling.”

Jørgen Heinrich: “Het bewustzijn is absoluut aanwezig. Het ‘kookboek’ dat Auke noemt, kan zeker een goede volgende stap zijn. Daarin leg je de functionaliteit vast, zodat je per tunnel een keuze kunt maken. Dan voorkom je de discussie over wel of geen sprinkler en ga je terug naar de functie. Wil je een brand in een bepaalde tijd kunnen bestrijden, of moet de tunnel zodanig zijn gebouwd dat deze bestand is tegen een brand?”

Hoe moet zo’n standaard ICT-proces tot stand komen? Wie bepaalt?

Jørgen Heinrich: “Bij treintunnels is het vanzelfsprekend ProRail die bepaalt. Dat is dan de opdrachtgever.”

Auke Sjoukema: “Maar dan moeten we wel eerst ons huis op orde hebben. Daarna kunnen we aan dit soort optimalisaties gaan denken. En dat gaat misschien wel sneller dan we denken. Spoorzone Delft levert hopelijk een aantal best practices op die we snel kunnen invoeren.”

Tot slot. Komt zo’n standaard ICT-proces er ook echt?

Jørgen Heinrich: “Ja, dat gaat er komen. Het zou voor de branche en de belastingbetaler goed zijn als er voor het hele proces, vanaf het pakket van eisen, via engineering en bouw tot beheer aan toe, een uniforme aanpak komt. Dat levert meer kwaliteit en scheelt veel faalkosten.”

Auke Sjoukema: “Ja, maar ik weet nog niet met welke diepgang. Het ‘kookboek’ van ProRail zal nooit hetzelfde zijn als dat van Rijkswaterstaat. Maar de processen zijn wel gelijk, en daarin kun je van elkaar leren.”

 Reacties uit het netwerk

Daan Dörr, consultant industriële automatisering:

“Movares en Prorail denken in dezelfde richting als de dienst Stadsbeheer van gemeente Den Haag; zij beogen iets soortgelijks met de Haagse Tunnel Standaard (het ICT deel van de LTS voor stadstunnels).

Veilig werkende software vraagt om standaardisatie (hergebruik van al eerder gerealiseerde en bewezen software) én het in veilige toestand komen van de processen bij het falen van een hardware ICT-onderdeel. Dat laatste heeft alles te maken met de autonome bedrijfszekerheid van een onderdeel en de hardware-architectuur waarin deze is geplaatst.

Software zelf kan niet falen, het is immers niet aan slijtage onderhevig. Van belang is dat software goed is ontworpen en getest, zodat de beoogde tunnelveiligheid met behulp van programmatuur wordt bereikt. ‘Standaard’ software (waaronder systeemsoftware) en ‘standaard’ architectuur (waaronder standaardpakketten) zijn dus sleutelwoorden. Fabrikanten leveren verschillende veelvuldig toegepaste ‘standaards’, het is evident dat het gebruik daarvan meer zekerheid geeft over de goede werking.

Waar de LTS besturingsfunctionaliteit (veelal software) beschrijft, sluit deze niet aan op standaards van leveranciers. Technisch is dit geen probleem, met behulp van applicatiesoftware is alles te bouwen. De LTS heeft vooral een stap gemaakt bij de standaardisatie van de technische processen (TTI’s). De automatisering zal echter voor elke tunnel anders uitpakken. Daar valt veel te halen voor wat betreft veiligheid, en dan niet alleen bij de bouw maar ook bij de verwerking van updates van systeemsoftware.

Bij de Haagse Tunnel Standaard (HTS) wordt geprobeerd meer gebruik te maken van de standaard mogelijkheden van besturingsystemen en wordt door opdrachtnemers zelf gemaakte apparatuur (dit zijn feitelijk geen COTS-producten) uitgesloten. Ook zijn de besturingsarchitecturen en details voor de MMI verder gespecificeerd, tevens worden de applicaties die daaruit volgen eigendom van de opdrachtgever. Hergebruik van (bewezen) software bij verschillende tunnels is zo beter te organiseren.”

Veiligheid aantonen bij niet-rijkstunnels vraagt om doordachte aanpak

Aantonen dat een tunnel veilig is, moet volgens de Tunnelwet met de zogeheten QRA-methode. Het onderliggende rekenmodel is echter niet voor alle tunnels zonder meer geschikt. Bart Duijvestijn, Jeffrey Rundberg en Roel Scholten vertellen hoe zij met dit probleem zijn omgegaan bij respectievelijk de IJtunnel, de Schipholtunnels en de Abdijtunnel: tunnels die afwijken van de ‘standaardtunnel’.

Alle tunnels in Nederland moeten uiterlijk 2019 voldoen aan de Tunnelwet, waarbij veiligheid het belangrijkste onderdeel is. “De voorgeschreven QRA-methode gaat net als de Landelijke Tunnelstandaard uit van een standaardtunnel”, legt Roel Scholten uit, directeur bij NedMobiel en in opdracht van de provincie Noord-Holland coördinator van de renovatie van de Abdijtunnel. “Die standaardtunnel is gebaseerd op een rijkstunnel en bestaat onder andere uit twee gescheiden tunnelbuizen met elk een eigen rijrichting en een middentunnelkanaal dat bij calamiteiten dient als vluchtroute en toegang voor de hulpdiensten. Er zijn echter veel bestaande tunnels, zoals de Abdijtunnel, de verkeerstunnels op Schiphol en de IJtunnel, die een andere, afwijkende configuratie hebben. Door die andere configuratie en vaak ook een ander gebruik – zo rijden er door de Abdijtunnel uitsluitend bussen – kun je bij deze niet-rijkstunnels niet zomaar met de verplichte methode aantonen dat ze aan de wettelijke veiligheidsnorm voldoen.”

Gezamenlijke zoektocht

“Toen wij in 2011 plannen maakten voor de renovatie van de IJtunnel werd al aan een wijziging van de Tunnelwet gewerkt, maar was het toepassen van de QRA-methode nog niet verplicht”, vertelt Bart Duijvestijn (Arcadis), technisch manager van het renovatieproject. “In eerste instantie konden we de bouwvergunning onder de oude regels aanvragen en konden we ook aantonen dat we aan de veiligheidseisen voldeden. Tijdens het renovatieproject werden we verrast door een constructief detail van de tunnel en besloten we af te wijken van de bestaande vergunning. Ondertussen was de wetswijziging doorgevoerd. Daardoor moesten we voor de aanpassing van de bouwvergunning en voor de openstellingsvergunning de veiligheid opnieuw aantonen met de QRA-methode. Dat lukte ons niet met het standaardmodel, wat voor ons aanleiding was om met onze vergunningverlener in overleg te gaan hoe we dit probleem het beste konden aanpakken.”

Rond die tijd startten ook de renovatieprojecten voor de Abdijtunnel en de Schipholtunnels. Bij deze projecten was eveneens snel duidelijk dat het aantonen van de veiligheid met het wettelijk voorgeschreven model lastig zou worden. Daarom besloten Scholten, Duijvestijn en Jeffrey Rundberg (TechConsult), die bij Schiphol projectmanager Tunnelveiligheid is, de koppen bij elkaar te steken en samen op zoek te gaan naar oplossingen. Rundberg: “Bij onze gezamenlijke zoektocht hebben we ons niet beperkt tot het aantonen van de vereiste veiligheid. We hebben ook gekeken hoe je bij niet-rijkstunnels op een slimme manier de benodigde veiligheidsvoorzieningen kunt vaststellen. Bij tunnels die afwijken van de standaardtunnel kun je namelijk niet simpelweg de Landelijke Tunnelstandaard volgen. Met elkaar discussiërend zijn we erop gekomen om in een vroeg stadium, naast de verplicht voorgeschreven QRA, scenarioanalyses uit te voeren. Wat gebeurt er bijvoorbeeld als er brand in de tunnel ontstaat? En wat bij een kop-staartbotsing? Door dit soort scenario’s door te nemen met alle partijen die betrokken zijn bij een eventuele calamiteit, kun je vrij snel vaststellen welke technische installaties en welke procedures nodig zijn om de veiligheid te garanderen.”

Abdijtunnel. (Foto: Provincie Noord-Holland)

“Weten welke technische voorzieningen allemaal vereist zijn, is bij bestaande tunnels niet voldoende”, vervolgt Rundberg. “Eén van lastige dingen bij deze tunnels is namelijk dat de beschikbare ruimte grotendeels vastligt. Dat houdt in dat je veel moet schipperen. Zo ontbrak bij de Diensttunnel de ruimte voor het vereiste ventilatiesysteem en de blusinstallatie. Uiteindelijk hebben we dat opgelost door van twee rijstroken per tunnelbuis terug te gaan naar één rijstrook en de vrijkomende ruimte te gebruiken voor de noodzakelijke voorzieningen.” Scholten vult aan: “Bij de Abdijtunnel was ruimtegebrek ook een probleem. Wij hebben dat deels opgelost door de vereiste veiligheid niet met extra installaties te realiseren, maar met extra procedures. Zo hebben we alle chauffeurs die door de tunnel rijden uitgebreid geïnstrueerd welke stappen ze moeten nemen bij een calamiteit.”

Beleidsruimte

Voor het aantonen van de veiligheid van de betreffende tunnels hebben de projectteams van Scholten, Duijvestijn en Rundberg gebruikgemaakt van de beleidsruimte die er is voor tunnels die afwijken van de standaardtunnel. Duijvestijn: “Rijkswaterstaat heeft een procedure ontwikkeld die je moet volgen als blijkt dat je met het voorgeschreven model niet kunt bewijzen dat jouw tunnel voldoet aan de veiligheidsnormen. Alle drie hebben we deze procedure gevolgd. De eerste stap van deze procedure is dat je kijkt of je met conservatieve schattingen en aanpassingen van je invoergegevens wel kunt aantonen dat je voldoet. Lukt dat ook niet, dan is de volgende stap dat je nagaat of je de veiligheid kunt bewijzen door het rekenmodel zelf zodanig aan te passen dat het beter aansluit op de specifieke situatie.”

“Deze stappen zijn het beste uit te leggen aan de hand van een voorbeeld”, zegt Duijvestijn. “In de IJtunnel varieert het dwarsprofiel en daarmee ook de ventilatiesnelheid. Op sommige plekken is die snelheid lager dan impliciet is opgenomen in het rekenmodel. In QRA-tunnels kun je dit soort variaties niet invoeren, je kunt alleen kiezen voor wel of geen ventilatie. Een ander probleem was dat de afstand tussen de vluchtdeuren in de IJtunnel sterk wisselt, van circa 100 tot 190 meter. In QRA-tunnels kun je echter maar één afstand invoeren. Daarom zijn we bij de eerste stap uitgegaan van de grootste vluchtdeurafstand en de laagste ventilatiesnelheid, en hebben we ook nog eens één tunnelsectie gemodelleerd alsof daar geen langsventilatie is. Vervolgens hebben we gekeken of we met deze conservatieve waarden aan het toetscriterium voldeden. Dat bleek niet het geval.”

Duijvestijn vervolgt: “De tweede stap, het aanpassen van het model, hebben we steeds in nauwe samenspraak met Rijkswaterstaat gedaan. In het geval van variaties in de ventilatiesnelheid en de vluchtdeurafstand hebben we ervoor gekozen de tunnel op te knippen in vier delen met elk een representatieve vluchtdeurafstand. Vervolgens hebben we in drie van de vier delen, waar de ventilatiesnelheid voldoet aan de norm, gerekend met ventilatie en in het vierde deel zonder.”

“Een ander onderwerp dat zowel bij de IJtunnel als de Abdijtunnel om een modelaanpassing vroeg, was de uitstaptijd. Het standaardmodel gaat ervan uit dat inzittenden van voertuigen in de tunnel bij een calamiteit twaalf seconden nodig hebben om hun voertuig te verlaten. Dat gaat op voor personenauto’s en vrachtwagens, maar niet voor bussen. Zeker niet als er veel volle bussen door de tunnel rijden, zoals bij de IJtunnel, of zelfs alleen maar bussen zoals bij de Abdijtunnel. Nu kun je in QRA-tunnels de uitstaptijd bij de eerste stap wel verhogen, maar dan moet je voor alle reizigers uitgaan van de tijd die de allerlaatste buspassagier nodig heeft om uit de bus te komen. Met die waarde voldeden we niet aan de eisen. Daarom hebben we in overleg met Rijkswaterstaat het model zodanig aangepast dat voor een deel van de inzittenden de uitstaptijd niet twaalf seconden is, maar twaalf seconden of meer, afhankelijk van de uitstapvolgorde”, aldus Duijvestijn.

Voldoende handvatten

“De gekozen aanpak heeft bij onze tunnels uitstekend gewerkt en ik ben ervan overtuigd dat deze aanpak ook voor andere niet-rijkstunnels geschikt is”, stelt Scholten. “Met de scenarioanalyses als aanvulling op de verplichte QRA kun je in een vroeg stadium alle risico’s goed in kaart brengen. Daarna kun je bepalen welke technische voorzieningen en procedures nodig zijn om die risico’s voldoende af te dekken. Hoewel we daarbij niet direct konden uitgaan van de Landelijke Tunnelstandaard hebben we deze standaard niet ter zijde geschoven. Zo hebben we nadrukkelijk gekeken welke delen we konden gebruiken en voor welke onderwerpen we moesten uitgaan van de Tunnelwet. Verder hebben we ervaren dat de procedure van Rijkswaterstaat voor het aanpassen van QRA-tunnels voldoende handvatten biedt om aan te tonen dat je tunnel aan de veiligheidsnormen uit de Tunnelwet voldoet. Het vergt weliswaar meer werk en de nodige denkkracht, maar het is goed te doen. En door de modelaanpassingen in overleg met Rijkswaterstaat te doen, weet de vergunningverlener dat de veiligheid van de tunnel niet in het geding is.”

De effecten van de passage van een TBM-schild op de omliggende grond

De zettingen die optreden bij het boren van een tunnel zijn tegenwoordig erg klein, nog maar enkele millimeters. Uit literatuuronderzoek is gebleken dat de meeste zettingen ontstaan tijdens de passage van het schild van de tunnelboormachine (TBM). Rosella Krot, afstudeerder aan de TU Delft, heeft daarom onderzoek gedaan naar dit specifieke deel van het tunnelboren en de zakkingen die hiermee samenhangen.

Inleiding

Zoals eerder te lezen was in deze rubriek (maart 2012) onderzoekt Daniele Festa het kinematisch gedrag van het schild van de TBM. Hij richt zich op de interactie tussen de grond en de TBM: wat heeft het graafwiel uitgegraven en hoe gedraagt het schild zich in dit gat? Het blijkt dat het schild de grond enkele centimeters wegduwt. Rosella onderzoekt of deze verplaatsingen rond de schild-grondinterface (kortweg interfaceverplaatsingen) effect hebben op de zakkingen op maaiveld. En zo ja, wat kan er gedaan worden om de zettingen op maaiveld te verkleinen? Om deze vragen te beantwoorden heeft Rosella de monitoringsresultaten van de Hubertustunnel in Den Haag geanalyseerd en een eindige elementenmodel gemaakt van het schild van de TBM.

Vectoren

Tijdens de bouw van de Hubertustunnel zijn met vier meetkruizen de grondverplaatsingen op diepte gemeten. De meetkruizen waren uitgerust met zeven extensometers en zeven inclinometers voor respectievelijk de verticale en horizontale verplaatsingen. Deze gegevens zijn omgezet naar absolute verplaatsingen door de verplaatsingen op maaiveld (gemeten met prisma’s) erbij op te tellen.

Vervolgens is de data verwerkt in een vectorplot, om een goed beeld te krijgen van de spreiding van de interfaceverplaatsingen. In de vectorplot zijn de horizontale en verticale verplaatsingen gecombineerd in een vector per fase. De eerste fase gaat in bij de eerste meting en loopt tot het moment dat het graafwiel zich tien meter voor het meetkruis bevindt. Aan het einde van de tweede fase heeft het graafwiel het meetkruis bereikt. De derde fase eindigt wanneer het graafwiel tien meter verder is. Op dat moment is de staart van het schild bij het meetkruis gearriveerd.

In figuur 1 is de vectorplot van meetkruis drie te zien. Wat opvalt:

  • De tweede sensor (gezien van boven) geeft een grotere verplaatsing dan de derde sensor, terwijl die laatste zich dichter bij de tunnel bevindt. Men zou verwachten dat de verplaatsingen rond het gat het grootst zijn, maar dat blijkt hier niet het geval. Dit kan te maken hebben met verschillende processen die zich rondom het schild afspelen.
  • Ook valt op dat de verplaatsingen aan de rechterkant van de TBM groter zijn dan die aan de linkerkant. In dit geval waren de interfaceverplaatsingen naar rechts. Bij meetkruis vier is dit echter niet geconstateerd.

Er moet worden opgemerkt dat de grondverplaatsingen gemeten bij meetkruis vier bijna twee keer zo klein zijn als die bij meetkruis drie. Uit de berekeningen van Daniele Festa bleken de interfaceverplaatsingen bij meetkruis vier bijna twee keer zo groot als die bij meetkruis drie.

PLAXIS 3D

Tussen de metingen van de inclinometers en de extensometers zit enkele meters ruimte. Daarom heeft Rosella het schild van de TBM gemodelleerd met PLAXIS 3D om de spreidingen van de interfaceverplaatsingen in meer detail te onderzoeken. De eigenschappen van zowel de grond als die van het schild van de TBM zijn afgeleid van de Hubertustunnel. De resultaten van het model laten zien dat bij meetkruis vier de grondverplaatsingen rondom het schild veel groter zijn dan bij meetkruis drie, maar de grondverplaatsingen worden op korte afstand van de TBM al snel minder. Op maaiveld laten de zettingstroggen dan ook het volgende zien:

  • Het verschil in zettingen op maaiveld tussen de twee meetkruizen is heel gering.
  • De maximum zetting is lichtelijk verschoven ten opzichte van de as van tunnel.
  • De oversnijding en de coniciteit (gemodelleerd door het toepassen van contractie) geven de meeste zettingen over het gehele proces.

Conclusies

De resultaten van zowel de monitoring als het eindige elementenmodel laten zien dat op maaiveld de verplaatsingen van het schild buiten zijn uitgegraven profiel slechts een klein effect hebben op de zettingen. Bij de monitoring is te zien dat de zettingen bij meetkruis drie groter zijn dan die bij meetkruis vier, terwijl de verplaatsingen van het schild juist kleiner zijn bij meetkruis drie. Uit het PLAXIS-mogel blijkt dat de verschillen in zettingen bij de twee meetkruizen zeer gering is.

Het model laat ook zien dat effecten dichtbij het schild wel sterk beïnvloed worden door de verplaatsingen van het schild; deze worden met de afstand snel minder. Hieruit kan geconcludeerd worden dat de verplaatsingen van het schild buiten zijn uitgegraven profiel vooral een lokaal effect hebben op de grond en de zettingen. De interfaceverplaatsingen lijken daarom niet de oorzaak van resterende zettingen die nu nog op maaiveld gemeten worden.

‘Het is ook interessant te onderzoeken waarom een techniek succesvol is’

ir. Joost F.W. Joustra
projectleider uitvoering boortunnel
Dienst Metro, Noord/Zuidlijn
Gemeente Amsterdam / Witteveen+Bos

“Het afstudeerwerk van Rosella Krot illustreert dat het beheersen van zakkingen als gevolg van het boorproces de laatste jaren millimeterwerk is geworden. Een luxeprobleem. Voor een onderzoeker die geïnteresseerd is in de fenomenen rond een boormachine lastig, want moeilijk meetbaar. Voor een project waarbij tunnels geboord worden onder een historische binnenstad heel prettig, want van omgevingsbeïnvloeding, met het risico op schade aan belendingen, is nauwelijks sprake. Toch kunnen die goede boorprestaties geen excuus zijn om niets te onderzoeken. De tunnelboortechniek in Nederland is de laatste vijftien jaar immers van de grond gekomen door het te doen, het intensief te monitoren en te bestuderen. De Noord/Zuidlijn laat zien hoe ver we daarmee gekomen zijn. Een afstudeer­onderzoek als dat van Rosella vervult ook nieuws­gierigheid naar het functioneren van de techniek in een voornamelijk empirisch vakgebied.”

Als we dát hadden geweten...

In ondergrondse bouwprojecten zijn grote sprongen gemaakt op het gebied van monitoring. Om die nieuwe kennis bij volgende projecten te kunnen benutten, werken experts aan een rapport met best practices. “Met dit rapport willen we bestaande richtlijnen toetsen aan de praktijk. Wij geven op basis van onze recente ervaringen nog wat bijkomende tips”, aldus Hans Mortier, voorzitter van de COB-werkgroep.

Monitoren wil zeggen ‘in de gaten houden’. Bij bouwprojecten gaat het dan hoofdzakelijk om de omgeving: in hoeverre verandert die naar aanleiding van de bouwwerkzaamheden? Werkgroepvoorzitter Hans Mortier, afdelingshoofd Engineering bij Dimco (voorheen CFE): “Met monitoring meet je de impact van de bouw. Vooraf zijn er inschattingen gedaan voor de effecten die het bouwproject op de omgeving kan hebben, zoals deformaties van gebouwen en veranderingen in het grondwaterpeil. Monitoring is er enerzijds op gericht om te controleren of alles volgens plan verloopt. Anderzijds kun je monitoren om het bouwproces te sturen. Dat is het geval bij de Observational Method (zie kader).”

“Bij het inrichten van het monitoringsproces wordt nu nog te vaak het warm water opnieuw uitgevonden”, stelt Mortier. “Een ingenieur die start op een nieuw project, begint blanco aan zijn monitoringsplan, met alleen de bestaande richtlijnen als basis. Dat is zonde. We hebben dit zelf ondervonden bij het maken van het rapport. Als we sommige van elkaars bevindingen eerder hadden geweten, waren we in onze projecten echt anders te werk gegaan. Kennis over monitoring wordt nu alleen benut als toevallig de juiste persoon betrokken is bij het project.”

Universeel

De experts in de werkgroep komen uit drie projecten: A2 Maastricht, Spoorzone Delft en de Noord/ Zuidlijn. Alle drie binnenstedelijk, maar verder heel verschillend. Mortier: “In Amsterdam is de tunnel geboord en zijn de stations op grote diepte aangelegd, terwijl Delft meer ‘rechttoe rechtaan’ bouwt met de open bouwput- en wanden-dakmethoden. Maastricht is weer anders vanwege de afwijkende ondergrond en de toepassing van de Observational Method.” Toch zijn de ervaringen te combineren: “De monitoring draait om hetzelfde, namelijk het meten van de impact. We gebruiken dezelfde meettechnieken en dezelfde verwerkingsprocessen. In het rapport geven we bijvoorbeeld tips over het omgaan met grenswaarden; dat is een aspect dat je in elk project tegenkomt.”

De tunnel van A2 Maastricht in aanbouw, maart 2014. (Foto: Flickr/Etienne Muis)

Een andere universele tip gaat over de ‘zachte kant’ van monitoring. “Monitoring levert niet alleen informatie op voor de techneuten. Ook de buitenwereld, de omgeving van het project, vindt monitoring belangrijk. Maar hoe communiceer je over metingen? Als je te gedetailleerd bent, heb je kans dat niet iedereen het begrijpt en mensen misschien verkeerde conclusies trekken. Aan de andere kant is er tegenwoordig al zo veel informatie online te vinden, dat het averechts kan werken om terughoudend te zijn. In het rapport gaan we in op deze afwegingen.”

Mortier vervolgt: “Het gaat om transparant en eerlijk communiceren over meetwaarden. Dat geldt ook al in het voortraject. Precontractuele monitoring is altijd een heikel punt. Wat als de metingen niet kloppen? Ons advies is om de monitoring zo open mogelijk te bespreken. Wat is er gemeten, wat zijn de onzekerheden? Voor de risicoverdeling kunnen de partijen ook een frame rondom de meetwaarden afspreken. Zolang de echte waarde binnen een bepaalde marge valt, kan de opdrachtgever niets worden verweten.”

Nulmeting

Eén van de projecten waarvoor de best practices nuttig kunnen zijn, is Zuidasdok. Vorig jaar is dit grootschalige Amsterdamse infraproject op de markt gezet en zijn er bouwbedrijven geselecteerd voor de dialoogfase. De gunning staat gepland voor februari 2017. “Aangezien een van onze belangrijkste conclusies gaat over het hebben van een nulmeting, zien we graag dat het rapport door de geselecteerde bedrijven wordt gebruikt. Onze ervaring is dat een goede nulmeting een enorme meerwaarde geeft. Als je een tijd kunt monitoren vóórdat er gewerkt wordt, en je zo goed zicht krijgt op de ‘normale’ meetwaarden, dan kun je later tijdens het bouwen de meetwaarden veel beter interpreteren. Je kunt dan de ruis eruit filteren, zodat je alleen datgene overhoudt wat echt door het bouwproces veroorzaakt wordt. Helaas is zo’n nulmeting vaak maar beperkt aanwezig, doordat men te laat begint met meten. Voor Zuidasdok ligt er nu de kans om het beter te doen. Over een nulmeting zijn al eisen opgenomen in de aanbesteding. Ons rapport kan helpen bij de invulling van die eisen.”

Meer tips

  • Overdaad schaadt. Pas de hoeveelheid (frequentie) van de metingen aan op de verwerkingsmogelijkheden. Als de gegevens niet omgezet kunnen worden naar relevante informatie, dan hebben de metingen geen zin.
  • Laat de data interpreteren door ervaren mensen. Om te kunnen begrijpen wat er nou eigenlijk is gemeten en wat dat voor het project betekent, is bouwervaring nodig. Het is daarom niet verstandig om een beginnend werkvoorbereider alleen de gegevens te laten verwerken.

A2 Maastricht

In de nacht van 15 op 16 december 2016 is de nieuwe tunnel in de A2 bij Maastricht in gebruik genomen; de eerste dubbellaagse tunnel in Nederland. In 2011 begon het consortium Avenue2 met de bouw van de vier tunnelbuizen. De onderste twee zijn bestemd voor het doorgaande verkeer en de bovenste twee voor het regionale en lokale verkeer. Bovenop de tunnel komt een langgerekt park met voet- en fietspaden en tweeduizend lindebomen.

Bovenop de tunnel komt de Groene Loper, een lintvormig park voor fietsers en voetgangers. Door zijn groene en recreatieve karakter verbindt de Groene Loper de wijken aan weerskanten van de A2 weer met elkaar. Langs het park komen (deels) nieuwe woningen, die passen in het Maastrichtse straatbeeld. In het park komen tweeduizend lindebomen die geschikt zijn om te groeien in de relatief dunne grondlaag bovenop het tunneldak. (Foto: Avenue2)

Een belangrijk voordeel van gescheiden tunnelbuizen is dat onderhoud en beheer eenvoudiger zijn uit te voeren. Zo kan het verkeer tijdelijk worden verplaatst naar de andere tunnelbuizen als in een tunnelbuis werkzaamheden nodig zijn. Daarnaast zorgt het stapelen van rijbanen ervoor dat de tunnel smaller wordt.

Totaalplan

Sinds de jaren zestig van de vorige eeuw moet al het doorgaande wegverkeer door Maastricht gebruik maken van de N2. Deze weg met twee keer twee rijstroken, gelijkvloerse kruisingen met stoplichten en een maximum snelheid van vijftig kilometer per uur, zorgt voor talrijke problemen. Zo vormt de weg een barrière tussen het oostelijke en westelijke deel van Maastricht en veroorzaakt het vele verkeer geluid- en stankoverlast. Verder staan er op de weg en de aansluitende snelweg A2 veel files en is geregeld sprake van onveilige verkeerssituaties.

Reeds in de jaren tachtig werd nagedacht hoe deze problemen konden worden opgelost. In 2003 zijn Rijkswaterstaat, de provincie Limburg en de gemeenten Maastricht en Meerssen gestart met een totaalplan voor verkeersinfrastructuur, stadsontwikkeling en natuur en milieu. Uiteindelijk heeft dit geleid tot het project ‘De Groene Loper’. Naast de bouw van de tunnel omvat het onder meer de aanleg van een park bovenop de tunnel – dat een groene verbinding vormt met de landgoederen net ten noorden van de stad – de ontwikkeling van nieuwe stadsentrees bij de tunnelmonden, en vernieuwing en verdere ontwikkeling van het stadsdeel Maastricht-Oost.

Om de planontwikkeling en inspraakprocedures zo snel mogelijk te laten verlopen hebben de vier opdrachtgevende partijen – Rijkswaterstaat, provincie Limburg en de gemeenten Maastricht en Meerssen – gekozen voor een gecombineerde aanpak van de Tracé- en MER-procedure, de wijzigingen van de bestemmingsplannen en de aanbesteding. Voor de aanbesteding is een prijsvraag uitgeschreven. Vijf consortia hebben hieraan meegedaan. Uiteindelijk heeft het consortium Avenue2, dat bestaat uit de bouwbedrijven Ballast Nedam en Strukton, de aanbesteding gewonnen.

Tijdens de Dag van de Bouw 2013 kon het publiek een bezoek brengen aan de tunnel in aanbouw. (Foto: Flickr/Jeroen van Lieshout)

Stapsgewijze aanleg

De nieuwe, gestapelde tunnel is aangelegd in een bouwkuip. Om ruimte voor deze bouwkuip te creëren, is de bestaande weg in westelijke richting verplaatst. De werkzaamheden voor de bouwkuip zijn in 2012 gestart bij de tunnelmonden bij het Europaplein aan de zuidkant en verkeersknooppunt Geusselt aan de noordkant. Daarna werkten twee zogeheten ‘tunnelbouwtreinen’ vanaf deze tunnelmonden naar elkaar toe.

De bouwkuip werd in stappen aangelegd. Hiertoe is het tunneltracé verdeeld in ruim honderd ‘moten’ van elk ongeveer 24 meter lang. Bij de aanleg van de bouwkuipwanden bracht de aannemerscombinatie tussen de verschillende moten damwanden aan, zodat de bouwkuip per ‘compartiment’ kon worden ontgraven. Na de (gedeeltelijke) ontgraving werden stempels of groutankers aangebracht om ervoor te zorgen dat de wanden van de bouwkuip niet naar binnen werden gedrukt.

Voor het maken van de wanden van de bouwkuip paste Avenue2 drie verschillende technieken toe. Bij de tunnelmonden bij Geusselt en het Europaplein zijn damwandplanken in de grond getrild. Binnen de bebouwde kom, tussen de John F. Kennedysingel en de Terblijterweg – waar intrillen geen optie is vanwege de te grote trillingshinder voor de nabije bebouwing – werden cement-bentonietwanden gemaakt waarin de aannemer vervolgens stalen damwandplanken liet zakken.

De tunnel op 29 maart 2014. Stempels houden de bouwkuipwanden op hun plaats. (Foto: Flickr/Etienne Muis)

Tussen de ANWB- en de Gemeenteflat is gekozen voor betonnen diepwanden omdat hier moest worden gewerkt met een zogeheten wanden-dakconstructie. Op dit deel van het tunneltracé ontbrak de ruimte om naast de bestaande weg een bouwkuip te maken. Daarom is de wanden-dakconstructie in twee fasen aangelegd. Eerst is het deel aan de kant van de ANWB-flat gemaakt. Vervolgens is over dit deel de N2 gelegd, waarna het het deel aan de kant van de Gemeenteflat is gebouwd.

Om de bouwkuip droog te houden, paste Avenue2 bemaling toe. Door het wegpompen van water uit de bouwkuip daalt de grondwaterstand ook in de directe omgeving, wat ongewenst is. Om deze verlaging van het grondwaterpeil zo veel mogelijk te beperken en de natuurlijke grondwaterstroming zo min mogelijk te verstoren, werkte de aannemerscombinatie met een retourbemaling: het water uit de bouwkuip werd via leidingen naar zogenoemde retourvelden naast de bouwkuip gepompt zodat het weer kan infiltreren.

Ingebruikname

Het in gebruik nemen van de vier tunnelbuizen was een flinke technische operatie. Op 15 december 2016 werd na de avondspits begonnen met het instellen van een verkeersomleiding, zodat de wegenbouwers de wegmarkeringen konden aanpassen, de nieuwe verkeers- en matrixborden konden instellen en andere laatste werkzaamheden konden uitvoeren. Om 23.10 uur kon de eerste bus met hoogwaardigheidsbekleders en gasten de tunnel in rijden en zo de eerste tunnelbuis in gebruik nemen. Het reguliere verkeer volgde om 23.40 uur. Daarna werden een voor een de andere buizen geopend. De vierde en laatste buis is om 8.00 uur in de ochtend in gebruik genomen.
>> Lees meer op de website van A2 Maastricht

SOS: Meer meten met infrarood

Hoe kan data helpen tunnels veiliger te maken? Bieden nieuwe technieken of inzichten kansen om de veiligheid te verhogen of de veiligheid op niveau te houden met hogere beschikbaarheid of tegen lagere kosten? Ontwikkelingen op ICT-gebied gaan snel. Meer rekenkracht en daaruit volgende snellere verwerking van data, maken het zinvol bestaande oplossingen tegen het licht te houden. In de Westerscheldetunnel is een proef gedaan met infraroodsensoren als basis voor het snelheidsonderschrijdingssysteem (SOS). Daaruit blijkt dat de beperkingen van bestaande systemen met detectielussen, kunnen worden weggenomen.

Het bedrijf Soltegro heeft op eigen initiatief een SOS ontwikkeld en vervolgens de N.V. Westerscheldetunnel bereid gevonden mee te werken aan een proefopstelling. “Ontwikkeling in eigen beheer is wellicht ongebruikelijk”, zegt commercieel directeur Jan-Martijn Teeuw van Soltegro, “maar past wel bij onze werkwijze. Wij positioneren ons tussen ingenieursbureaus en automatiseringbedrijven in. Bij ons werken veel ICT-specialisten, maar ook elektrotechnisch en werktuigkundig ingenieurs. Met die disciplines werken we op een integrale manier aan projecten. En dat brengt met zich mee dat wij ook anders tegen problemen aankijken.”

Manager systems engineering en innovatie Franc Fouchier legt uit wat dat in de praktijk inhoudt: “De ervaring die wij hebben opgedaan in de softwarewereld projecteren we op de civieltechnische wereld. Dat betekent dat je eerst een probleem goed analyseert zonder daarbij al oplossingsrichtingen in het achterhoofd te hebben en pas in tweede instantie kijkt naar de combinatie van technieken die je kunt inzetten om dat probleem op te lossen. In de praktijk is deze aanpak vaak niet mogelijk, omdat bepaalde oplossingen zijn voorgeschreven. Zo staat in de tunnelstandaard dat je voor snelheidsmeting inductielussen moet toepassen. In onze optiek heb je voor een optimale oplossing keuzevrijheid nodig. Daarom konden we het SOS dat we in de Westerscheldetunnel hebben getest ook alleen maar in eigen beheer ontwikkelen.”

“In onze optiek heb je voor een optimale oplossing keuzevrijheid nodig.”

Elk voertuig meten

Met een SOS kan worden gedetecteerd of de snelheid van voertuigen op een willekeurig punt te laag wordt en er daardoor gevaarlijke situaties ontstaan die bijvoorbeeld kunnen leiden tot kop-staartbotsingen. Het gebruik van inductielussen om snelheidsverschillen te detecteren kent een aantal beperkingen. Er wordt alleen gemeten op de plaats van de lus, en defecten aan een inductielus leiden bij vervanging vrijwel altijd tot verminderde beschikbaarheid van de tunnel. Jan-Martijn Teeuw: “Met onze sensoren zijn we in staat elk voertuig in de tunnel uniek te detecteren. Je volgt het bewegende object en dat biedt meer mogelijkheden. Je verzamelt meer informatie. Met behulp van software kun je detecteren of voertuigen afwijkend gedrag vertonen. Het gaat dus verder dan alleen detecteren of een willekeurig voertuig op een bepaalde plaats onder een minimumsnelheid komt. Bovendien kun je door bijvoorbeeld een kapotte sensor een meting missen en nog steeds een betrouwbaar resultaat hebben.”

In de Westerscheldetunnel is het systeem van Soltegro op een deel van het traject geïnstalleerd, naast het bestaande systeem. De wegverkeersleiders hebben beide systemen gemonitord en Soltegro feedback gegeven. In een halfjaar tijd zijn enorm veel meetgegevens verzameld. Daaruit blijkt dat de betrouwbaarheid van het systeem bijzonder hoog is. De mensen van de Westerscheldetunnel hebben beaamd dat het goed heeft gefunctioneerd. “De betrouwbaarheid is cruciaal”, vindt Jan-Martijn Teeuw. “Als systemen te vaak valse meldingen geven, is het gevolg dat wegverkeersleiders het niet meer serieus nemen en ook niet reageren als er wel iets aan de hand is. Dan neemt de veiligheid per definitie af.”

Tijd in plaats van afstand

Implementatie van een SOS met infraroodsensoren vindt, net als bij gebruik van detectielussen, plaats op basis van een risicoanalyse. Bij een steile uitrit, zoals bij de Westerscheldetunnel, mag je verwachten dat de snelheid van vrachtwagens sneller terugloopt. In zo’n situatie zal bij beide systemen sprake zijn van meer meetpunten dan in een vlak deel van de tunnel. Het verschil zit in de meeteenheid. Bij gebruik van detectielussen is er per definitie sprake van afstand. Met de sensoren wordt gemeten in tijd, en is het ook mogelijk om meer dan alleen snelheidsverschillen te detecteren.

Franc Fouchier: “Met infrarood detecteren we bijvoorbeeld ook of al het verkeer ineens naar één baan opschuift. Dat kan voor de wegverkeersleiding een teken zijn dat er sprake is van bijvoorbeeld afgevallen lading, langzaam rijdend verkeer of stilstand. En de data die je verzamelt kun je ook gaan gebruiken om verkeersbewegingen te voorspellen. Het is voorstelbaar dat je met dit systeem ruim van tevoren kunt voorspellen waar en wanneer filevorming ontstaat en dat je vanuit het systeem vervolgens meteen deze informatie naar in-carsystemen verstuurt. Daar kun je overigens de wegverkeersleider als buffer tussen zetten. Het is maar net wat de wegbeheerder wil.”

Gebruikersinterface van het ontwikkelde SOS. (Beeld: Soltegro)

Waar gaat dat naartoe?

“In de wereld van het ‘Internet of Things’ krijgen we steeds meer situaties waarin systemen beslissingen gaan nemen”, vervolgt Franc. “Wij verwachten dat het die kant op gaat. Vandaar onze integrale visie en de keuze om niet de omgeving te detecteren, maar het object dat in die omgeving beweegt. De informatie die door het object wordt gegenereerd, opent nieuwe toepassingsmogelijkheden.” Jan-Martijn Teeuw: “We richten ons nu in eerste aanleg op tunnels, maar er kan natuurlijk veel meer met deze techniek. Je kunt er bijvoorbeeld ook mee detecteren hoe voertuigen in een parkeergarage bewegen. Voor ons is de volgende stap om in gesprek te gaan met beheerders van tunnels waar detectielussen echt niet voldoen. In de praktijk van de tunnelstandaard zie je nu al wel dat er ruimte komt voor projectspecifieke afwijkingen en er wordt al gesproken in termen van ‘standaard of gelijkwaardig’. Daar liggen kansen voor deze vorm van detectie, maar formeel zou de toepassing nu alleen kunnen in niet-rijkstunnels.”

Dit was de Onderbreking Meten is weten

Bekijk een ander koffietafelboek: