Loading...

De Onderbreking

Meten is weten

Meten is weten

Lekken in waterleidingen opsporen

Maastricht, A2 Maastricht

De invloed van big data

Veiligheid aantonen bij niet-rijkstunnels

Als we dat hadden geweten

De glazen bol van Liander

Delft, Willem van Oranjetunnel

SOS: Meer meten met infrarood

Kennisbank

Meten is weten

Ondergronds bouwen is teamwerk. Vernieuwingen zijn succesvol als we samen vraagstukken uitpluizen en doelen stellen. Tussen ‘waar gaat het om’, ‘wat gaan we doen’ en ‘wat zijn de consequenties daarvan’ moeten we flink verzamelen, meten en bepalen. 

In de wereld van de civiele techniek en ruimtelijke ordening wordt om de meest uiteenlopende redenen gemeten. Meten is onlosmakelijk verbonden met kennisontwikkeling. We verzamelen gegevens om voorspellingen te doen, of om ze juist te controleren. De betekenis van data geeft zich echter niet zomaar prijs. We hebben analyses en interpretaties nodig om de datastroom te duiden. Ook dát hoort bij meten.

Nieuwe techniek voor lekdetectie waterleidingen: vooral nuttig in Engeland

Lekken in waterleidingen opsporen aan de hand van drukgolven. Een slimme vinding van Engelse wetenschappers. Maar in Groot-Brittannië is de nood dan ook hoog: tot maar liefst vijfentwintig procent van het Engelse drinkwatertransport gaat verloren aan lekkage. Hoe staat het ervoor in Nederland?

11 september 2012 | AUTEUR: Armand van Wijck

Een bijzondere methode voor het opsporen van lekkages in ondergrondse waterleidingen kwam vorige maand langszij. Wetenschappers van Sheffield University publiceerden in het augustusnummer van het Journal of the American Water Works Association over het detecteren van lekken met behulp van drukgolven. Volgens de wetenschappers gaat het om een ‘betrouwbare techniek die de waterindustrie een enorme sprong vooruit kan helpen’. Maar heeft deze methode ook potentie voor de Nederlandse sector? Wat doet ons land eigenlijk aan lekdetectie?

“Er is in Nederland wel al onderzoek gedaan naar lekverlies en technieken en methoden om dit te minimaliseren, maar deze techniek om lekkages met drukgolven op te sporen kennen we hier nog niet”, weet Ralph Beuken, onderzoeker bij KWR Watercycle Research Institute. De Engelse methode gebruikt een meetinstrument dat op een brandkraan past en een drukgolf de waterleidingen instuurt. Zodra de golf een lekkage tegenkomt, wordt die deels teruggekaatst. Wanneer de weerkaatste drukgolf terug is bij de brandkraan, kan aan de hand van de verstreken tijd de afstand van een lek tot de brandkraan bepaald worden.

Meten met drukgolven lijkt een mooi idee, maar volgens Beuken zal deze techniek niet snel de overstap maken naar deze kant van Het Kanaal. “Lekkages zijn in Nederland een beperkt probleem. Veel beperkter dan in omliggende landen. In Engeland ligt het gemiddelde lekverlies rond de vijfentwintig procent, bij ons is het niet veel hoger dan drie procent.” Het op grote schaal inspecteren van leidingen om lekken op te sporen is in Nederland volgens Beuken dan ook niet lonend. Enkele specifieke situaties uitgezonderd, wegen de kosten van inspectie niet op tegen de beperkte vermindering van het lekverlies.

Zoek de verschillen

Hoe komt het dat drinkwaterverlies zo enorm verschilt tussen Nederland en Engeland? Dat wilden de Engelsen ook wel eens weten. In 2005 voerde KWR daarom samen met Engelse drinkwaterbedrijven een vergelijkend onderzoek uit. “Een van de oorzaken voor het lage lekverlies in Nederland is dat de druk in Nederland lager is dan in Engeland. Nederland is een vlak land, maar in Engeland liggen overal heuvels. Daardoor hebben zij een hogere waterdruk. Dit maakt leidingen gevoeliger voor lekkages en als een lek optreedt, stroomt het water er harder uit”, legt Beuken uit. Ook bestaat de Engelse ondergrond veel meer uit harde stenen, waar de leidingen tegenaan drukken. En de Nederlandse leidingenstelsels zijn veel jonger dan de Engelse, die voor een groot deel al waren aangelegd vóór de twintigste eeuw.

Een ander aspect is dat lekkages in Nederland sneller worden gemeld en daardoor eerder worden gerepareerd. Vanwege onze zanderige of kleiige ondergrond, meestal afgedekt met klinkers, leidt een lek al gauw tot een plas op straat. In Engeland met zijn meer rotsachtige bodem, die vaker is afgedekt met beton of asfalt, kan een lek jaren ongestoord stromen.

“Nog een verschil is dat waterbedrijven in Nederland vrij exact weten hoeveel water ze in het net pompen en hoeveel de klanten verbruiken”, aldus Beuken. In Nederland hebben vrijwel alle woningen een watermeter, terwijl in Engeland de waterconsumptie voor het grootste deel wordt geschat. Slechts veertig procent van de Engelse huishoudens beschikt over een watermeter. “De Engelsen zijn nu wel bezig om overal meters te plaatsen, maar het duurt wel even voordat miljoenen huishoudens bemeterd zijn.”

SmartBalls

Is het opsporen van lekkages in Nederland dan totaal overbodig? Op grote schaal wel, maar er zijn situaties waarin het wel wenselijk is. “Als er bijvoorbeeld een leiding in een dijk ligt, is het effect van een leidingbreuk veel groter. In dat geval kijken waterbedrijven extra kritisch naar de leidingen”, aldus Beuken. “Zo heeft Waternet twee jaar geleden een betonnen leiding over een lengte van vijfenvijftig kilometer getest die deels in een dijk van het Amsterdam-Rijnkanaal ligt.”

Hiervoor is gebruikt gemaakt van zogenaamde SmartBalls van het Canadese bedrijf Pure Technologies. Deze kleine balletjes – met een doorsnede van zeven centimeter en een schuimrubber omhulsel – bewegen met de waterstroom mee. Beuken: “Een lek produceert geluid, en op het moment dat de bal een lek passeert, wordt dit geluid geregistreerd.” In de aluminium kern van de SmartBall zit een akoestische sensor die het geluid opneemt, GPS en batterijen. Uit de proef bleek dat kleine lekkages vanaf ongeveer vijf liter per uur tot op enkele meters nauwkeurig worden gevonden. “Maar er zijn nog wel verbeteringen nodig voordat de techniek goed inzetbaar is”, aldus Beuken.

De meetmethoden in Engeland waren tot nu toe allemaal akoestisch. Dat levert bijvoorbeeld problemen op bij het detecteren van lekkages in plastic buizen, die een grotere akoestische demping hebben dan hun gietijzeren tegenhangers. Volgens de wetenschappers van Sheffield University heeft de drukgolvenmethode de potentie om de detectiesnelheid en nauwkeurigheid van het opsporen te verhogen. Hoewel de drukgolfmethode voor Nederland dus enigszins overbodig is, kan het de Engelse drinkwaterbedrijven een stuk verder helpen.

A2 Maastricht

In de nacht van 15 op 16 december 2016 is de nieuwe tunnel in de A2 bij Maastricht in gebruik genomen; de eerste dubbellaagse tunnel in Nederland. In 2011 begon het consortium Avenue2 met de bouw van de vier tunnelbuizen. De onderste twee zijn bestemd voor het doorgaande verkeer en de bovenste twee voor het regionale en lokale verkeer. Bovenop de tunnel komt een langgerekt park met voet- en fietspaden en tweeduizend lindebomen.

Bovenop de tunnel komt de Groene Loper, een lintvormig park voor fietsers en voetgangers. Door zijn groene en recreatieve karakter verbindt de Groene Loper de wijken aan weerskanten van de A2 weer met elkaar. Langs het park komen (deels) nieuwe woningen, die passen in het Maastrichtse straatbeeld. In het park komen tweeduizend lindebomen die geschikt zijn om te groeien in de relatief dunne grondlaag bovenop het tunneldak. (Foto: Avenue2)

Een belangrijk voordeel van gescheiden tunnelbuizen is dat onderhoud en beheer eenvoudiger zijn uit te voeren. Zo kan het verkeer tijdelijk worden verplaatst naar de andere tunnelbuizen als in een tunnelbuis werkzaamheden nodig zijn. Daarnaast zorgt het stapelen van rijbanen ervoor dat de tunnel smaller wordt.

Totaalplan

Sinds de jaren zestig van de vorige eeuw moet al het doorgaande wegverkeer door Maastricht gebruik maken van de N2. Deze weg met twee keer twee rijstroken, gelijkvloerse kruisingen met stoplichten en een maximum snelheid van vijftig kilometer per uur, zorgt voor talrijke problemen. Zo vormt de weg een barrière tussen het oostelijke en westelijke deel van Maastricht en veroorzaakt het vele verkeer geluid- en stankoverlast. Verder staan er op de weg en de aansluitende snelweg A2 veel files en is geregeld sprake van onveilige verkeerssituaties.

Reeds in de jaren tachtig werd nagedacht hoe deze problemen konden worden opgelost. In 2003 zijn Rijkswaterstaat, de provincie Limburg en de gemeenten Maastricht en Meerssen gestart met een totaalplan voor verkeersinfrastructuur, stadsontwikkeling en natuur en milieu. Uiteindelijk heeft dit geleid tot het project ‘De Groene Loper’. Naast de bouw van de tunnel omvat het onder meer de aanleg van een park bovenop de tunnel – dat een groene verbinding vormt met de landgoederen net ten noorden van de stad – de ontwikkeling van nieuwe stadsentrees bij de tunnelmonden, en vernieuwing en verdere ontwikkeling van het stadsdeel Maastricht-Oost.

Om de planontwikkeling en inspraakprocedures zo snel mogelijk te laten verlopen hebben de vier opdrachtgevende partijen – Rijkswaterstaat, provincie Limburg en de gemeenten Maastricht en Meerssen – gekozen voor een gecombineerde aanpak van de Tracé- en MER-procedure, de wijzigingen van de bestemmingsplannen en de aanbesteding. Voor de aanbesteding is een prijsvraag uitgeschreven. Vijf consortia hebben hieraan meegedaan. Uiteindelijk heeft het consortium Avenue2, dat bestaat uit de bouwbedrijven Ballast Nedam en Strukton, de aanbesteding gewonnen.

Tijdens de Dag van de Bouw 2013 kon het publiek een bezoek brengen aan de tunnel in aanbouw. (Foto: Flickr/Jeroen van Lieshout)

Stapsgewijze aanleg

De nieuwe, gestapelde tunnel is aangelegd in een bouwkuip. Om ruimte voor deze bouwkuip te creëren, is de bestaande weg in westelijke richting verplaatst. De werkzaamheden voor de bouwkuip zijn in 2012 gestart bij de tunnelmonden bij het Europaplein aan de zuidkant en verkeersknooppunt Geusselt aan de noordkant. Daarna werkten twee zogeheten ‘tunnelbouwtreinen’ vanaf deze tunnelmonden naar elkaar toe.

De bouwkuip werd in stappen aangelegd. Hiertoe is het tunneltracé verdeeld in ruim honderd ‘moten’ van elk ongeveer 24 meter lang. Bij de aanleg van de bouwkuipwanden bracht de aannemerscombinatie tussen de verschillende moten damwanden aan, zodat de bouwkuip per ‘compartiment’ kon worden ontgraven. Na de (gedeeltelijke) ontgraving werden stempels of groutankers aangebracht om ervoor te zorgen dat de wanden van de bouwkuip niet naar binnen werden gedrukt.

Voor het maken van de wanden van de bouwkuip paste Avenue2 drie verschillende technieken toe. Bij de tunnelmonden bij Geusselt en het Europaplein zijn damwandplanken in de grond getrild. Binnen de bebouwde kom, tussen de John F. Kennedysingel en de Terblijterweg – waar intrillen geen optie is vanwege de te grote trillingshinder voor de nabije bebouwing – werden cement-bentonietwanden gemaakt waarin de aannemer vervolgens stalen damwandplanken liet zakken.

De tunnel op 29 maart 2014. Stempels houden de bouwkuipwanden op hun plaats. (Foto: Flickr/Etienne Muis)

Tussen de ANWB- en de Gemeenteflat is gekozen voor betonnen diepwanden omdat hier moest worden gewerkt met een zogeheten wanden-dakconstructie. Op dit deel van het tunneltracé ontbrak de ruimte om naast de bestaande weg een bouwkuip te maken. Daarom is de wanden-dakconstructie in twee fasen aangelegd. Eerst is het deel aan de kant van de ANWB-flat gemaakt. Vervolgens is over dit deel de N2 gelegd, waarna het het deel aan de kant van de Gemeenteflat is gebouwd.

Om de bouwkuip droog te houden, paste Avenue2 bemaling toe. Door het wegpompen van water uit de bouwkuip daalt de grondwaterstand ook in de directe omgeving, wat ongewenst is. Om deze verlaging van het grondwaterpeil zo veel mogelijk te beperken en de natuurlijke grondwaterstroming zo min mogelijk te verstoren, werkte de aannemerscombinatie met een retourbemaling: het water uit de bouwkuip werd via leidingen naar zogenoemde retourvelden naast de bouwkuip gepompt zodat het weer kan infiltreren.

Ingebruikname

Het in gebruik nemen van de vier tunnelbuizen was een flinke technische operatie. Op 15 december 2016 werd na de avondspits begonnen met het instellen van een verkeersomleiding, zodat de wegenbouwers de wegmarkeringen konden aanpassen, de nieuwe verkeers- en matrixborden konden instellen en andere laatste werkzaamheden konden uitvoeren. Om 23.10 uur kon de eerste bus met hoogwaardigheidsbekleders en gasten de tunnel in rijden en zo de eerste tunnelbuis in gebruik nemen. Het reguliere verkeer volgde om 23.40 uur. Daarna werden een voor een de andere buizen geopend. De vierde en laatste buis is om 8.00 uur in de ochtend in gebruik genomen.
>> Lees meer op de website van A2 Maastricht

“Let the data speak? Zo gemakkelijk is het niet”

We meten steeds meer en we weten steeds meer. “De exponentiële groei van de rekenkracht van computers heeft een ‘tipping point’ bereikt”, zegt prof. dr. ir. Wil van der Aalst, wetenschappelijk directeur van Data Science Center Eindhoven. “Met de hoeveelheid data die we tot onze beschikking hebben, kunnen we grenzen verleggen.”

“In de dagelijkse praktijk zien we steeds meer voorbeelden van nieuwe ontwikkelingen die zijn ontstaan door gebruik van big data. We zijn op een punt aangekomen dat organisaties wel gebruik moeten maken van de nieuwe mogelijkheden die deze ontwikkeling met zich meebrengt. Anders ben je er straks niet meer. Daarbij zit de uitdaging niet in het binnenhalen van voldoende computerpower. Het gaat erom dat je de immense hoeveelheid data die je verzamelt goed kunt interpreteren en er slim en verantwoord mee omgaat.”

“De ontwikkelingen die we zien op het gebied van data science kunnen we verklaren met de Wet van Moore”, vertelt Wil van der Aalst. “Gordon Moore, een van de oprichters van Intel, voorspelde al in 1965 dat de hoeveelheid beschikbare data exponentieel zou toenemen. Zo’n ontwikkeling creëert op een gegeven moment een omslagpunt. Je kunt het vergelijken met de opkomst van de computer. Computers waren er al veel langer. Toen het gebruik van computers het omslagpunt bereikte, nam ook het aantal toepassingen toe. Als we de groei die Moore in 1965 voorspelde zouden toepassen op vervoer, wordt duidelijk wat de impact van die exponentiële groei is. We zouden dan met een milliliter benzine de wereld rond kunnen rijden en in een milliseconde naar New York kunnen reizen.”

“Ook bestaande diensten kunnen sneller, beter en efficiënter dankzij data science.”

Grote veranderingen

“We zijn op een punt beland dat de ontwikkelingen op datagebied relevant zijn geworden voor alle sectoren. Dat leidt tot grote veranderingen. Bijvoorbeeld bij de Belastingdienst, waar vijfduizend administratieve krachten moeten afvloeien, terwijl er tegelijkertijd vijftienhonderd datawetenschappers worden aangenomen. Slim gebruik van data leidt tot nieuwe diensten die eerder niet mogelijk waren. Taxidienst Uber is daar een voorbeeld van. Ook bestaande diensten kunnen sneller, beter en efficiënter dankzij data science. Er ontstaat als het ware een wapenwedloop in snelheid, kostenbeperking en efficiency om consumenten beter te behagen. Ook doordat dienstverlening steeds fijnmaziger kan plaatsvinden. In ziekenhuizen leidt data science ertoe dat er steeds meer evidence based kan worden gewerkt. Data-analyse leidt ertoe dat de behandeling persoonlijk wordt en meer rekening houdt met geslacht, persoonlijke kenmerken en historie. De veranderingen doen zich overigens het sterkst voor in sectoren waar het product digitaal is, zoals de financiële wereld. Je ziet nu al de grote bankkantoren uit het straatbeeld verdwijnen. Welke sector is de volgende die door digitalisering opgeschud wordt?”

Competitie

“Er ontstaat een competitie tussen mens en machine. Een machine kan beter schaken en beter bank spelen dan een mens. Maar in het café waar je een kopje koffie wilt drinken, wint de mens. En tussen die uitersten zie je mengvormen ontstaan, waarbij de machine informatie toevoegt en de mens die informatie analyseert. De mens heeft nu nog vaak de overhand in het analyseren en interpreteren van informatie. Maar dat schuift steeds verder op. Wie had bij de uitvinding van de digitale camera kunnen denken dat zo’n zelfde camera gebruikt zou gaan worden om huidkanker te detecteren via een gratis app? De machine neemt het over van de mens. Dit soort ontwikkelingen zullen we steeds vaker zien.”

The Internet of Events

In juni verschijnt het nieuwste boek van Wil van der Aalst: Process Mining – Data Science in Action. Daarin noemt hij The Internet of Events (IoE) als term voor alle beschikbare data. IoE is opgebouwd uit:

  • The Internet of Content, alle informatie die mensen hebben gegenereerd om de kennis over specifieke onderwerpen te vergroten;
  • The Internet of People, alle data die te maken hebben met sociale interactie (o.a. social media);
  • The Internet of Things, data van fysieke objecten die zijn verbonden aan het internet;
  • The Internet of Locations, alle data met betrekking tot geografische locaties.

Autonoom gedrag

“Er zullen steeds meer producten op de markt komen die in hoge mate autonoom zijn. Het is een interessante uitdaging om ervoor te zorgen dat (deels) autonome producten, zoals auto’s, zich goed gedragen en blijven functioneren, ook als het internet uitvalt. Die uitdaging ligt er ook voor het omgaan met de wensen die zich op orkestratieniveau aandienen. Om te komen tot slimme logistiek wil je de data van auto’s en infrastructuur zoals tunnels, aan elkaar kunnen koppelen. Dan moet je goed nadenken over welke functies zijn gekoppeld aan fysieke constructies en welke aan software. Een tunnel is hardware in zijn ultieme vorm. Die kun je lastig aanpassen. Software is wel heel flexibel en ontwikkelt snel. Er zijn al verhalen over zogeheten smart dust. Sensoren die je uitstrooit en vervolgens gebruikt om data te verzamelen. Er zullen nog heel wat toepassingen ontstaan die we nu nog niet kunnen bedenken. Dat geldt ook voor ondergronds bouwen.”

Smart cities

“Ondergronds bouwen heeft veel raakvlakken met de ontwikkeling van smart cities. Je ziet dat alle universiteiten daarmee bezig zijn. In een smart city heb je allerlei objecten die data verzamelen. Met data-analyse kun je patronen herkennen en die gebruiken om energie te besparen of dienstverlening te verbeteren. Analyse van leefpatronen geeft bijvoorbeeld inzicht in de relatie tussen mobiliteit en energieverbruik.”

“Onderzoek op het gebied van smart homes gebeurt al op uitgebreide schaal. De Technische Universiteit Eindhoven en Philips werken samen in het Data Science Flagship. Daar doen achttien promovendi onderzoek. Producten worden steeds vaker met sensoren uitgerust. De informatie die je uit sensoren in producten haalt, kun je voor allerlei doeleinden gebruiken. Maar het is nog moeilijk te voorspelen welke toepassingen in de praktijk ook echt waarde toevoegen. Als een scheerapparaat informatie vergaart over de conditie van de huid van de gebruiker, kun je dat dan gebruiken om verzorgingsproducten aan te bieden? En flesjes voor babyvoeding met sensoren? Wat kun je met de data die daaruit beschikbaar komen?”

Acceptatie

“Een van de interessante thema’s binnen het vakgebied data science is de mate waarin mensen bereid zijn de invloed van data in hun dagelijks leven te accepteren. Dan hebben we het over responsible data science: hoe beschermen we de burger? Mensen moeten de uitkomst van data-analyse kunnen vertrouwen. Er is meer geautomatiseerde data beschikbaar dan dat er voldoende onderlegde mensen zijn die de uitkomsten kunnen interpreteren. Er wordt vaak gezegd: ‘Let the data speak’, maar zo gemakkelijk is het niet. Een bekend fenomeen is dat als je maar genoeg hypotheses onderzoekt je er altijd wel een vindt die bij toeval waar is. Als je naar data kijkt, kun je een sterke correlatie ontdekken tussen het bezitten van een smartphone en van de trap vallen. Maar dat wil nog niet zeggen dat er een oorzakelijk verband is. Het is niet voor niets dat bijna een kwart van de vragen die door burgers zijn gesteld in het kader van de Nationale Wetenschapsagenda gerelateerd zijn aan data science. In die vragen zie je dat mensen bezorgd zijn over privacy en transparantie.”

Opleiden

“Het opleiden van gekwalificeerde datawetenschappers is cruciaal. De tijd dringt. Vanuit de Technische Universiteit Eindhoven werken we samen met de Tilburg University aan grootschalig data science-onderwijs. We hebben al twee masteropleidingen. In september 2016 beginnen we met een brede bacheloropleiding en er komt een tweede fase-opleiding voor studenten die na hun master een opleiding data science willen volgen. Daarvoor wordt voormalig nonnenklooster Mariënburg in Den Bosch omgebouwd tot Jheronimus Academy of Data Science. Bij dit initiatief zijn ook bedrijven, de stad Den Bosch en de provincie Noord-Brabant betrokken.”

Veiligheid aantonen bij niet-rijkstunnels vraagt om doordachte aanpak

Aantonen dat een tunnel veilig is, moet volgens de Tunnelwet met de zogeheten QRA-methode. Het onderliggende rekenmodel is echter niet voor alle tunnels zonder meer geschikt. Bart Duijvestijn, Jeffrey Rundberg en Roel Scholten vertellen hoe zij met dit probleem zijn omgegaan bij respectievelijk de IJtunnel, de Schipholtunnels en de Abdijtunnel: tunnels die afwijken van de ‘standaardtunnel’.

Alle tunnels in Nederland moeten uiterlijk 2019 voldoen aan de Tunnelwet, waarbij veiligheid het belangrijkste onderdeel is. “De voorgeschreven QRA-methode gaat net als de Landelijke Tunnelstandaard uit van een standaardtunnel”, legt Roel Scholten uit, directeur bij NedMobiel en in opdracht van de provincie Noord-Holland coördinator van de renovatie van de Abdijtunnel. “Die standaardtunnel is gebaseerd op een rijkstunnel en bestaat onder andere uit twee gescheiden tunnelbuizen met elk een eigen rijrichting en een middentunnelkanaal dat bij calamiteiten dient als vluchtroute en toegang voor de hulpdiensten. Er zijn echter veel bestaande tunnels, zoals de Abdijtunnel, de verkeerstunnels op Schiphol en de IJtunnel, die een andere, afwijkende configuratie hebben. Door die andere configuratie en vaak ook een ander gebruik – zo rijden er door de Abdijtunnel uitsluitend bussen – kun je bij deze niet-rijkstunnels niet zomaar met de verplichte methode aantonen dat ze aan de wettelijke veiligheidsnorm voldoen.”

Gezamenlijke zoektocht

“Toen wij in 2011 plannen maakten voor de renovatie van de IJtunnel werd al aan een wijziging van de Tunnelwet gewerkt, maar was het toepassen van de QRA-methode nog niet verplicht”, vertelt Bart Duijvestijn (Arcadis), technisch manager van het renovatieproject. “In eerste instantie konden we de bouwvergunning onder de oude regels aanvragen en konden we ook aantonen dat we aan de veiligheidseisen voldeden. Tijdens het renovatieproject werden we verrast door een constructief detail van de tunnel en besloten we af te wijken van de bestaande vergunning. Ondertussen was de wetswijziging doorgevoerd. Daardoor moesten we voor de aanpassing van de bouwvergunning en voor de openstellingsvergunning de veiligheid opnieuw aantonen met de QRA-methode. Dat lukte ons niet met het standaardmodel, wat voor ons aanleiding was om met onze vergunningverlener in overleg te gaan hoe we dit probleem het beste konden aanpakken.”

Rond die tijd startten ook de renovatieprojecten voor de Abdijtunnel en de Schipholtunnels. Bij deze projecten was eveneens snel duidelijk dat het aantonen van de veiligheid met het wettelijk voorgeschreven model lastig zou worden. Daarom besloten Scholten, Duijvestijn en Jeffrey Rundberg (TechConsult), die bij Schiphol projectmanager Tunnelveiligheid is, de koppen bij elkaar te steken en samen op zoek te gaan naar oplossingen. Rundberg: “Bij onze gezamenlijke zoektocht hebben we ons niet beperkt tot het aantonen van de vereiste veiligheid. We hebben ook gekeken hoe je bij niet-rijkstunnels op een slimme manier de benodigde veiligheidsvoorzieningen kunt vaststellen. Bij tunnels die afwijken van de standaardtunnel kun je namelijk niet simpelweg de Landelijke Tunnelstandaard volgen. Met elkaar discussiërend zijn we erop gekomen om in een vroeg stadium, naast de verplicht voorgeschreven QRA, scenarioanalyses uit te voeren. Wat gebeurt er bijvoorbeeld als er brand in de tunnel ontstaat? En wat bij een kop-staartbotsing? Door dit soort scenario’s door te nemen met alle partijen die betrokken zijn bij een eventuele calamiteit, kun je vrij snel vaststellen welke technische installaties en welke procedures nodig zijn om de veiligheid te garanderen.”

Abdijtunnel. (Foto: Provincie Noord-Holland)

“Weten welke technische voorzieningen allemaal vereist zijn, is bij bestaande tunnels niet voldoende”, vervolgt Rundberg. “Eén van lastige dingen bij deze tunnels is namelijk dat de beschikbare ruimte grotendeels vastligt. Dat houdt in dat je veel moet schipperen. Zo ontbrak bij de Diensttunnel de ruimte voor het vereiste ventilatiesysteem en de blusinstallatie. Uiteindelijk hebben we dat opgelost door van twee rijstroken per tunnelbuis terug te gaan naar één rijstrook en de vrijkomende ruimte te gebruiken voor de noodzakelijke voorzieningen.” Scholten vult aan: “Bij de Abdijtunnel was ruimtegebrek ook een probleem. Wij hebben dat deels opgelost door de vereiste veiligheid niet met extra installaties te realiseren, maar met extra procedures. Zo hebben we alle chauffeurs die door de tunnel rijden uitgebreid geïnstrueerd welke stappen ze moeten nemen bij een calamiteit.”

Beleidsruimte

Voor het aantonen van de veiligheid van de betreffende tunnels hebben de projectteams van Scholten, Duijvestijn en Rundberg gebruikgemaakt van de beleidsruimte die er is voor tunnels die afwijken van de standaardtunnel. Duijvestijn: “Rijkswaterstaat heeft een procedure ontwikkeld die je moet volgen als blijkt dat je met het voorgeschreven model niet kunt bewijzen dat jouw tunnel voldoet aan de veiligheidsnormen. Alle drie hebben we deze procedure gevolgd. De eerste stap van deze procedure is dat je kijkt of je met conservatieve schattingen en aanpassingen van je invoergegevens wel kunt aantonen dat je voldoet. Lukt dat ook niet, dan is de volgende stap dat je nagaat of je de veiligheid kunt bewijzen door het rekenmodel zelf zodanig aan te passen dat het beter aansluit op de specifieke situatie.”

“Deze stappen zijn het beste uit te leggen aan de hand van een voorbeeld”, zegt Duijvestijn. “In de IJtunnel varieert het dwarsprofiel en daarmee ook de ventilatiesnelheid. Op sommige plekken is die snelheid lager dan impliciet is opgenomen in het rekenmodel. In QRA-tunnels kun je dit soort variaties niet invoeren, je kunt alleen kiezen voor wel of geen ventilatie. Een ander probleem was dat de afstand tussen de vluchtdeuren in de IJtunnel sterk wisselt, van circa 100 tot 190 meter. In QRA-tunnels kun je echter maar één afstand invoeren. Daarom zijn we bij de eerste stap uitgegaan van de grootste vluchtdeurafstand en de laagste ventilatiesnelheid, en hebben we ook nog eens één tunnelsectie gemodelleerd alsof daar geen langsventilatie is. Vervolgens hebben we gekeken of we met deze conservatieve waarden aan het toetscriterium voldeden. Dat bleek niet het geval.”

Duijvestijn vervolgt: “De tweede stap, het aanpassen van het model, hebben we steeds in nauwe samenspraak met Rijkswaterstaat gedaan. In het geval van variaties in de ventilatiesnelheid en de vluchtdeurafstand hebben we ervoor gekozen de tunnel op te knippen in vier delen met elk een representatieve vluchtdeurafstand. Vervolgens hebben we in drie van de vier delen, waar de ventilatiesnelheid voldoet aan de norm, gerekend met ventilatie en in het vierde deel zonder.”

“Een ander onderwerp dat zowel bij de IJtunnel als de Abdijtunnel om een modelaanpassing vroeg, was de uitstaptijd. Het standaardmodel gaat ervan uit dat inzittenden van voertuigen in de tunnel bij een calamiteit twaalf seconden nodig hebben om hun voertuig te verlaten. Dat gaat op voor personenauto’s en vrachtwagens, maar niet voor bussen. Zeker niet als er veel volle bussen door de tunnel rijden, zoals bij de IJtunnel, of zelfs alleen maar bussen zoals bij de Abdijtunnel. Nu kun je in QRA-tunnels de uitstaptijd bij de eerste stap wel verhogen, maar dan moet je voor alle reizigers uitgaan van de tijd die de allerlaatste buspassagier nodig heeft om uit de bus te komen. Met die waarde voldeden we niet aan de eisen. Daarom hebben we in overleg met Rijkswaterstaat het model zodanig aangepast dat voor een deel van de inzittenden de uitstaptijd niet twaalf seconden is, maar twaalf seconden of meer, afhankelijk van de uitstapvolgorde”, aldus Duijvestijn.

Voldoende handvatten

“De gekozen aanpak heeft bij onze tunnels uitstekend gewerkt en ik ben ervan overtuigd dat deze aanpak ook voor andere niet-rijkstunnels geschikt is”, stelt Scholten. “Met de scenarioanalyses als aanvulling op de verplichte QRA kun je in een vroeg stadium alle risico’s goed in kaart brengen. Daarna kun je bepalen welke technische voorzieningen en procedures nodig zijn om die risico’s voldoende af te dekken. Hoewel we daarbij niet direct konden uitgaan van de Landelijke Tunnelstandaard hebben we deze standaard niet ter zijde geschoven. Zo hebben we nadrukkelijk gekeken welke delen we konden gebruiken en voor welke onderwerpen we moesten uitgaan van de Tunnelwet. Verder hebben we ervaren dat de procedure van Rijkswaterstaat voor het aanpassen van QRA-tunnels voldoende handvatten biedt om aan te tonen dat je tunnel aan de veiligheidsnormen uit de Tunnelwet voldoet. Het vergt weliswaar meer werk en de nodige denkkracht, maar het is goed te doen. En door de modelaanpassingen in overleg met Rijkswaterstaat te doen, weet de vergunningverlener dat de veiligheid van de tunnel niet in het geding is.”

Als we dát hadden geweten...

In ondergrondse bouwprojecten zijn grote sprongen gemaakt op het gebied van monitoring. Om die nieuwe kennis bij volgende projecten te kunnen benutten, werken experts aan een rapport met best practices. “Met dit rapport willen we bestaande richtlijnen toetsen aan de praktijk. Wij geven op basis van onze recente ervaringen nog wat bijkomende tips”, aldus Hans Mortier, voorzitter van de COB-werkgroep.

Monitoren wil zeggen ‘in de gaten houden’. Bij bouwprojecten gaat het dan hoofdzakelijk om de omgeving: in hoeverre verandert die naar aanleiding van de bouwwerkzaamheden? Werkgroepvoorzitter Hans Mortier, afdelingshoofd Engineering bij Dimco (voorheen CFE): “Met monitoring meet je de impact van de bouw. Vooraf zijn er inschattingen gedaan voor de effecten die het bouwproject op de omgeving kan hebben, zoals deformaties van gebouwen en veranderingen in het grondwaterpeil. Monitoring is er enerzijds op gericht om te controleren of alles volgens plan verloopt. Anderzijds kun je monitoren om het bouwproces te sturen. Dat is het geval bij de Observational Method (zie kader).”

“Bij het inrichten van het monitoringsproces wordt nu nog te vaak het warm water opnieuw uitgevonden”, stelt Mortier. “Een ingenieur die start op een nieuw project, begint blanco aan zijn monitoringsplan, met alleen de bestaande richtlijnen als basis. Dat is zonde. We hebben dit zelf ondervonden bij het maken van het rapport. Als we sommige van elkaars bevindingen eerder hadden geweten, waren we in onze projecten echt anders te werk gegaan. Kennis over monitoring wordt nu alleen benut als toevallig de juiste persoon betrokken is bij het project.”

Universeel

De experts in de werkgroep komen uit drie projecten: A2 Maastricht, Spoorzone Delft en de Noord/ Zuidlijn. Alle drie binnenstedelijk, maar verder heel verschillend. Mortier: “In Amsterdam is de tunnel geboord en zijn de stations op grote diepte aangelegd, terwijl Delft meer ‘rechttoe rechtaan’ bouwt met de open bouwput- en wanden-dakmethoden. Maastricht is weer anders vanwege de afwijkende ondergrond en de toepassing van de Observational Method.” Toch zijn de ervaringen te combineren: “De monitoring draait om hetzelfde, namelijk het meten van de impact. We gebruiken dezelfde meettechnieken en dezelfde verwerkingsprocessen. In het rapport geven we bijvoorbeeld tips over het omgaan met grenswaarden; dat is een aspect dat je in elk project tegenkomt.”

De tunnel van A2 Maastricht in aanbouw, maart 2014. (Foto: Flickr/Etienne Muis)

Een andere universele tip gaat over de ‘zachte kant’ van monitoring. “Monitoring levert niet alleen informatie op voor de techneuten. Ook de buitenwereld, de omgeving van het project, vindt monitoring belangrijk. Maar hoe communiceer je over metingen? Als je te gedetailleerd bent, heb je kans dat niet iedereen het begrijpt en mensen misschien verkeerde conclusies trekken. Aan de andere kant is er tegenwoordig al zo veel informatie online te vinden, dat het averechts kan werken om terughoudend te zijn. In het rapport gaan we in op deze afwegingen.”

Mortier vervolgt: “Het gaat om transparant en eerlijk communiceren over meetwaarden. Dat geldt ook al in het voortraject. Precontractuele monitoring is altijd een heikel punt. Wat als de metingen niet kloppen? Ons advies is om de monitoring zo open mogelijk te bespreken. Wat is er gemeten, wat zijn de onzekerheden? Voor de risicoverdeling kunnen de partijen ook een frame rondom de meetwaarden afspreken. Zolang de echte waarde binnen een bepaalde marge valt, kan de opdrachtgever niets worden verweten.”

Nulmeting

Eén van de projecten waarvoor de best practices nuttig kunnen zijn, is Zuidasdok. Vorig jaar is dit grootschalige Amsterdamse infraproject op de markt gezet en zijn er bouwbedrijven geselecteerd voor de dialoogfase. De gunning staat gepland voor februari 2017. “Aangezien een van onze belangrijkste conclusies gaat over het hebben van een nulmeting, zien we graag dat het rapport door de geselecteerde bedrijven wordt gebruikt. Onze ervaring is dat een goede nulmeting een enorme meerwaarde geeft. Als je een tijd kunt monitoren vóórdat er gewerkt wordt, en je zo goed zicht krijgt op de ‘normale’ meetwaarden, dan kun je later tijdens het bouwen de meetwaarden veel beter interpreteren. Je kunt dan de ruis eruit filteren, zodat je alleen datgene overhoudt wat echt door het bouwproces veroorzaakt wordt. Helaas is zo’n nulmeting vaak maar beperkt aanwezig, doordat men te laat begint met meten. Voor Zuidasdok ligt er nu de kans om het beter te doen. Over een nulmeting zijn al eisen opgenomen in de aanbesteding. Ons rapport kan helpen bij de invulling van die eisen.”

Meer tips

  • Overdaad schaadt. Pas de hoeveelheid (frequentie) van de metingen aan op de verwerkingsmogelijkheden. Als de gegevens niet omgezet kunnen worden naar relevante informatie, dan hebben de metingen geen zin.
  • Laat de data interpreteren door ervaren mensen. Om te kunnen begrijpen wat er nou eigenlijk is gemeten en wat dat voor het project betekent, is bouwervaring nodig. Het is daarom niet verstandig om een beginnend werkvoorbereider alleen de gegevens te laten verwerken.

De glazen bol van Liander

Calamiteiten voorkomen, de betrouwbaarheid vergroten en inzicht krijgen in toekomstig gedrag van klanten. Netbeheerders willen om allerlei redenen naar een hogere voorspelbaarheid van hun netwerken. Netbeheerder Liander heeft een model ontwikkeld dat aan de hand van metingen in de praktijk wordt gevalideerd, en dat aan de hand van die metingen steeds slimmer wordt.

De voorspelbaarheid van netwerken wordt steeds belangrijker. “In het licht van de energietransitie waarbij elektriciteit steeds vaker decentraal wordt opgewekt en het netwerk als gevolg van nieuwe energiebronnen (zon, wind, warmtepompen) op een andere manier wordt belast, hebben we meer informatie nodig om gericht te kunnen investeren in onze netwerken”, zegt consultant Hein van de Wijgert van Liander. “Consumenten worden producenten, wat betekent dat je niet langer een top-downbenadering kunt hanteren. We gaan steeds meer naar decentralisatie van systemen. Op die ontwikkeling anticiperen wij. Bij dreigende piekbelasting is van oudsher de reflex om zwaardere kabels aan te leggen. Dat zal op sommige plekken nog steeds aan de orde zijn, maar met behulp van slimme modellen kunnen we veel meer gebiedsgericht werken. Ons zogeheten ANDES-model biedt trendanalyses over de inzet van warmtebronnen, zon en wind. Op basis van specifieke kenmerken kunnen we voorspellen in welke wijken of gebieden vermoedelijk groei van toepassing van zonne-energie zal plaatsvinden. Dat leidt tot belastingsprofielen tot op wijkniveau, aan de hand waarvan we de impact op het netwerk kunnen bepalen.”

ANDES

Het ANDES-model (advanced net decision support) biedt inzicht in de huidige en toekomstige netbelasting, waarmee Liander de impact van lokale veranderingen op het net (als gevolg van de energietransitie) tijdig ziet aankomen. Doel is om investeringen in de netten zoveel mogelijk uit te stellen of te voorkomen en om de leveringszekerheid te verhogen. Het model is voortdurend in ontwikkeling. Praktijkmetingen worden gebruikt om het model te valideren en verder te verfijnen.

ANDES brengt scenario’s in beeld voor macro-ontwikkelingen op het gebied van zonnepanelen, elektrisch vervoer en warmtepompen. De penetratie van de verschillende ontwikkelingen wordt per postcodegebied in kaart gebracht op basis van onder andere demografische en planologische ontwikkelingen en ontwikkelingen bij grootverbruikers. Op basis daarvan wordt per gebied de impact op het net berekend. Meetdata worden gebruikt om inzicht te krijgen in huidige belasting van het net en de mate waarin de netcapaciteit wordt benut. Zo komen capaciteitsknelpunten in beeld.

Bijdragen aan verduurzaming

Data gebruiken om gebiedsgericht werken en daarmee ook elektriciteitsverbruik te verevenen, kan bijdragen aan optimalisatie van netwerken en de verduurzamingsdoelstellingen van afnemers. Hein van de Wijgert: “Wij zitten bij bijvoorbeeld gemeenten als gesprekspartner aan tafel, waar het gaat om het bepalen van de optimale energiemix. Vanuit onze systemen kunnen we grootverbruikers informatie verschaffen waarmee zij kunnen sturen op verbruik. Heel concreet kan dat betekenen dat we op basis van de beschikbare ruimte op het net adviseren ten aanzien van de locatie van een datacenter. In Amsterdam praten we mee over de bouwopgave voor vijftig duizend nieuwe woningen. Wij hebben er belang bij zo vroeg mogelijk betrokken te raken bij ruimtelijkeordeningsplannen, omdat we daarmee desinvesteringen kunnen voorkomen en tot betere afstemming in de operationele uitvoering kunnen komen. Ook op andere thema’s, zoals de energievoorziening van tunnels en andere ondergrondse infrastructuur, zouden wij vanuit datagedreven netbeheer een rol kunnen spelen.”

Scrummen in het lab

“Met behulp van datagedreven netbeheer willen we al onze processen beter en slimmer maken”, vertellen Hein van de Wijgert en collega Denny Harmsen. “Daarbij hebben we vier doelstellingen: hogere klanttevredenheid, gerichter investeren, verhoging van de leveringszekerheid en verlaging van de operationele kosten. Waar we vroeger meer techniekgedreven waren, werken we nu veel meer vanuit businessdoelen. Die doelen moeten meetbaar zijn, maar we werken niet met complete dashboards waarmee we alle processen continu monitoren. Voorlopig is ons doel om het elke dag een beetje beter te doen. Simpelweg omdat we nog moeten ontdekken wat digitalisering ons exact gaat opleveren. In Noord-Holland-Noord brengen we allerlei uitrolprojecten op het gebied van digitalisering versneld samen, zodat we daar integraal ervaring kunnen opdoen met alle meetdata die daar beschikbaar komen.”

“We moeten nog ontdekken wat digitalisering ons exact gaat opleveren.”

Noord-Holland-Noord is het voorlooprayon voor de ideeën die in het Liander Control Lab (LCL) in Haarlem worden uitgewerkt. In het LCL scrummen mensen van de afdelingen Netmanagement, Netcare, Assetmanagement, Klant & Markt en IT naar nieuwe data-toepassingen. Vaak zijn de daarvoor benodigde data al aanwezig. Een van de ideeën die worden uitgewerkt, is het in een overzicht bijeenbrengen van verschillende informatiestromen, zodat bedrijfsvoerders sneller een analyse kunnen maken. In de praktijk ontstaat een wisselwerking tussen het LCL en het voorlooprayon. Zo worden in Noord-Holland-Noord versneld slimme meters aangeboden aan gebruikers die zijn aangesloten op intelligente middenspanningsruimtes. De gecombineerde data van de slimme meters en de middenspanningsruimtes kunnen helpen om storingen sneller op te lossen.

Storingen voorkomen

Het paradepaardje van de recente ontwikkelingen bij Liander is de Smart Cable Guard (SCG). Het systeem om stroomstoringen in tijd en plaats te kunnen voorspellen, is ontwikkeld in samenwerking met DNV GL, Enexis en Locamation. Met een proef in Friesland is al aangetoond dat de SCG daadwerkelijk stroomstoringen kan voorkomen. Denny Harmsen: “Het systeem biedt een oplossing voor stroomstoringen die het gevolg zijn van kortsluiting in ondergrondse kabelverbindingen, en kan meer dan de helft van alle stroomstoringen voorkomen.”

Smart Cable Guard

De Smart Cable Guard meet verstoringen in middenspanningskabels. Er wordt een signaal door de kabel gestuurd. Verstoring van dat signaal door deelontlading op de plaats waar kortsluiting aanstaande is, wordt zowel aan het begin (A) als aan het eind (B) van de kabel gemeten. Door te berekenen wat het verschil in tijd is die het signaal nodig heeft om A en B te bereiken, kan exact worden bepaald waar de verstoring zich bevindt.

 

 

Op de totale betrouwbaarheid van de elektriciteitsnetwerken is het effect overigens alleen in cijfers achter de komma uit te drukken. Met een betrouwbaarheid van 99,995% zijn de nog resterende verbetermogelijkheden klein. Denny Harmsen: “De impact van een stroomstoring op klant en samenleving is echter groot. Een gemiddelde stroomstoring betekent dat duizend klanten meer dan een uur hinder ondervinden. Daarom hanteert Liander het uitgangspunt dat elke storing er een te veel is. Het Smart Cable Guard-meetsysteem kan minuscule verstoringen in het middenspanningskabelsysteem tot op een meter nauwkeurig detecteren en lokaliseren, waarmee voorspeld kan worden of er binnen enkele weken kortsluiting zal ontstaan. Het systeem geeft dan tijdig een waarschuwing, zodat reparatie kan plaatsvinden voordat de stroomstoring optreedt.”

Liander verwacht veel van de SCG. Niet alleen in terugdringing van het aantal storingen, maar ook ten aanzien van een hogere voorspelbaarheid van de prestaties van het gehele netwerk. Met de verzamelde data wordt tegelijkertijd kennis opgebouwd over faalfrequenties, faalmechanismen en het gedrag van ondergrondse assets (oud én nieuw) voorafgaand aan een storing. Die informatie kan bijvoorbeeld leiden tot onderzoek naar andere technieken of materialen.

Willem van Oranjetunnel

In 2009 startten in Delft de werkzaamheden voor het project Spoorzone Delft. Het spoorviaduct dat langs de oude binnenstad liep, is vervangen door een spoortunnel. Deze tunnel, de Willem van Oranjetunnel, is in april 2015 officieel geopend. De tunnel heeft twee tunnelbuizen en is geschikt voor vier sporen. Inclusief toeritten is hij 2.300 meter lang. Onderdeel van de tunnel is een nieuw ondergronds station.

(Foto: Ronald Tilleman)

Aanleiding

Tot de bouw van de tunnel is om verschillende redenen besloten. Het spoorviaduct was met zijn twee sporen een flessenhals op het verder viersporige tracé tussen Rotterdam en Amsterdam en was niet berekend op de verwachte groei van het treinverkeer. Daarnaast veroorzaakten de circa 350 treinen die iedere dag over het viaduct reden veel geluidsoverlast voor omwonenden en vormde de spoorlijn dwars door de stad een barrière tussen de verschillende wijken. Verder was het bestaande station te krap en voldeed het niet meer aan de eisen van de tijd.

(Foto: spoorzonedelft.nl)

Bouwmethode

Voor de bouw van de tunnel is gekozen voor ‘proven technology’. De aannemerscombinatie heeft de spoortunnel voor het grootste deel gebouwd met de wanden-dakmethode in combinatie met diepwanden. Deze methode is trillings- en geluidsarm en kan op relatief korte afstand van bestaande bebouwing worden toegepast. Met een speciale grijper wordt een sleuf gegraven. Tijdens het graven zorgt een steunvloeistof ervoor dat de sleuf niet instort. Als de sleuf klaar is gaat er wapening in en wordt hij volgestort met beton. Hierbij duwt het beton de steunvloeistof uit de sleuf. Zodra de wanden klaar zijn wordt hiertussen een dak gemaakt. Vervolgens kan de grond onder het dak worden ontgraven en de tunnelconstructie worden afgemaakt, terwijl de hinder bovengronds minimaal is.
Alleen bij de tunnelmonden en kruisingen met open water heeft de aannemerscombinatie een andere bouwmethode toegepast. Hier is met damwanden een bouwkuip gemaakt, waarin vervolgens de tunnel is gebouwd. Om eventuele effecten van de bouwwerkzaamheden op de omgeving exact waar te nemen – en op tijd maatregelen te kunnen treffen – heeft de aannemer samen met ProRail een uitgebreid monitoringprogramma uitgevoerd.

Innovatief

Bij het bouwproject zijn ook innovatieve technieken toegepast. Met crosshole sonic logging zijn bijvoorbeeld defecten in diepwanden opgespoord. Dit onderzoek vond plaats in kader van het Geo-Impuls/TU Delft-promotieonderzoek van Rodriaan Spruit. Crosshole sonic logging maakt gebruik van het principe dat een geluidsgolf die door beton gaat, met een andere snelheid beweegt dan wanneer hij door bentoniet of een holle ruimte gaat. Door bij diepwanden aan weerszijden van een voeg zenders te hangen die een hoogfrequent signaal uitzenden dan wel ontvangen, kun je de looptijd en de sterkte van de signalen dóór de voeg vastleggen. Met die gegevens kun je vervolgens de kwaliteit van de voeg over de gehele lengte van de diepwand bepalen. In Delft is met deze techniek met succes een zwakke plek in een diepwand gedetecteerd.

Ondergronds station

Het nieuwe ondergrondse station ligt bovenop de tunnel, vlak naast het bestaande station dat op termijn een andere bestemming krijgt. De stationshal op de begane grond is onderdeel van het nieuwe stadskantoor. Direct naast het station, onder het stationsplein, is een ondergrondse fietsenstalling voor 5.000 fietsen en iets verderop aan de Phoenixstraat een ondergrondse parkeergarage voor 650 auto’s. Het stationsplein is ingericht als een vervoersknooppunt, waar reizigers eenvoudig kunnen overstappen op tram, bus en taxi.

Het oude en het nieuwe station. (Foto: Ronald Tilleman)

Herontwikkelen

De gemeente Delft heeft de bouw van de spoortunnel aangegrepen om het hele gebied rond de spoorlijn te herontwikkelen. Hiervoor heeft ze een stimuleringssubsidie gekregen in het kader van de voorbeeldprojecten Intensief Ruimtegebruik. De grond die vrijkomt als het spoor naar de ondergrond is verplaatst, gaat Delft onder andere gebruiken voor de aanleg van een stadspark met veel water en de bouw van woningen en kantoren. De Spaanse architect en stedenbouwkundige Joan Busquets heeft voor het gebied een stedenbouwkundige visie ontwikkeld.

SOS: Meer meten met infrarood

Hoe kan data helpen tunnels veiliger te maken? Bieden nieuwe technieken of inzichten kansen om de veiligheid te verhogen of de veiligheid op niveau te houden met hogere beschikbaarheid of tegen lagere kosten? Ontwikkelingen op ICT-gebied gaan snel. Meer rekenkracht en daaruit volgende snellere verwerking van data, maken het zinvol bestaande oplossingen tegen het licht te houden. In de Westerscheldetunnel is een proef gedaan met infraroodsensoren als basis voor het snelheidsonderschrijdingssysteem (SOS). Daaruit blijkt dat de beperkingen van bestaande systemen met detectielussen, kunnen worden weggenomen.

Het bedrijf Soltegro heeft op eigen initiatief een SOS ontwikkeld en vervolgens de N.V. Westerscheldetunnel bereid gevonden mee te werken aan een proefopstelling. “Ontwikkeling in eigen beheer is wellicht ongebruikelijk”, zegt commercieel directeur Jan-Martijn Teeuw van Soltegro, “maar past wel bij onze werkwijze. Wij positioneren ons tussen ingenieursbureaus en automatiseringbedrijven in. Bij ons werken veel ICT-specialisten, maar ook elektrotechnisch en werktuigkundig ingenieurs. Met die disciplines werken we op een integrale manier aan projecten. En dat brengt met zich mee dat wij ook anders tegen problemen aankijken.”

Manager systems engineering en innovatie Franc Fouchier legt uit wat dat in de praktijk inhoudt: “De ervaring die wij hebben opgedaan in de softwarewereld projecteren we op de civieltechnische wereld. Dat betekent dat je eerst een probleem goed analyseert zonder daarbij al oplossingsrichtingen in het achterhoofd te hebben en pas in tweede instantie kijkt naar de combinatie van technieken die je kunt inzetten om dat probleem op te lossen. In de praktijk is deze aanpak vaak niet mogelijk, omdat bepaalde oplossingen zijn voorgeschreven. Zo staat in de tunnelstandaard dat je voor snelheidsmeting inductielussen moet toepassen. In onze optiek heb je voor een optimale oplossing keuzevrijheid nodig. Daarom konden we het SOS dat we in de Westerscheldetunnel hebben getest ook alleen maar in eigen beheer ontwikkelen.”

“In onze optiek heb je voor een optimale oplossing keuzevrijheid nodig.”

Elk voertuig meten

Met een SOS kan worden gedetecteerd of de snelheid van voertuigen op een willekeurig punt te laag wordt en er daardoor gevaarlijke situaties ontstaan die bijvoorbeeld kunnen leiden tot kop-staartbotsingen. Het gebruik van inductielussen om snelheidsverschillen te detecteren kent een aantal beperkingen. Er wordt alleen gemeten op de plaats van de lus, en defecten aan een inductielus leiden bij vervanging vrijwel altijd tot verminderde beschikbaarheid van de tunnel. Jan-Martijn Teeuw: “Met onze sensoren zijn we in staat elk voertuig in de tunnel uniek te detecteren. Je volgt het bewegende object en dat biedt meer mogelijkheden. Je verzamelt meer informatie. Met behulp van software kun je detecteren of voertuigen afwijkend gedrag vertonen. Het gaat dus verder dan alleen detecteren of een willekeurig voertuig op een bepaalde plaats onder een minimumsnelheid komt. Bovendien kun je door bijvoorbeeld een kapotte sensor een meting missen en nog steeds een betrouwbaar resultaat hebben.”

In de Westerscheldetunnel is het systeem van Soltegro op een deel van het traject geïnstalleerd, naast het bestaande systeem. De wegverkeersleiders hebben beide systemen gemonitord en Soltegro feedback gegeven. In een halfjaar tijd zijn enorm veel meetgegevens verzameld. Daaruit blijkt dat de betrouwbaarheid van het systeem bijzonder hoog is. De mensen van de Westerscheldetunnel hebben beaamd dat het goed heeft gefunctioneerd. “De betrouwbaarheid is cruciaal”, vindt Jan-Martijn Teeuw. “Als systemen te vaak valse meldingen geven, is het gevolg dat wegverkeersleiders het niet meer serieus nemen en ook niet reageren als er wel iets aan de hand is. Dan neemt de veiligheid per definitie af.”

Tijd in plaats van afstand

Implementatie van een SOS met infraroodsensoren vindt, net als bij gebruik van detectielussen, plaats op basis van een risicoanalyse. Bij een steile uitrit, zoals bij de Westerscheldetunnel, mag je verwachten dat de snelheid van vrachtwagens sneller terugloopt. In zo’n situatie zal bij beide systemen sprake zijn van meer meetpunten dan in een vlak deel van de tunnel. Het verschil zit in de meeteenheid. Bij gebruik van detectielussen is er per definitie sprake van afstand. Met de sensoren wordt gemeten in tijd, en is het ook mogelijk om meer dan alleen snelheidsverschillen te detecteren.

Franc Fouchier: “Met infrarood detecteren we bijvoorbeeld ook of al het verkeer ineens naar één baan opschuift. Dat kan voor de wegverkeersleiding een teken zijn dat er sprake is van bijvoorbeeld afgevallen lading, langzaam rijdend verkeer of stilstand. En de data die je verzamelt kun je ook gaan gebruiken om verkeersbewegingen te voorspellen. Het is voorstelbaar dat je met dit systeem ruim van tevoren kunt voorspellen waar en wanneer filevorming ontstaat en dat je vanuit het systeem vervolgens meteen deze informatie naar in-carsystemen verstuurt. Daar kun je overigens de wegverkeersleider als buffer tussen zetten. Het is maar net wat de wegbeheerder wil.”

Gebruikersinterface van het ontwikkelde SOS. (Beeld: Soltegro)

Waar gaat dat naartoe?

“In de wereld van het ‘Internet of Things’ krijgen we steeds meer situaties waarin systemen beslissingen gaan nemen”, vervolgt Franc. “Wij verwachten dat het die kant op gaat. Vandaar onze integrale visie en de keuze om niet de omgeving te detecteren, maar het object dat in die omgeving beweegt. De informatie die door het object wordt gegenereerd, opent nieuwe toepassingsmogelijkheden.” Jan-Martijn Teeuw: “We richten ons nu in eerste aanleg op tunnels, maar er kan natuurlijk veel meer met deze techniek. Je kunt er bijvoorbeeld ook mee detecteren hoe voertuigen in een parkeergarage bewegen. Voor ons is de volgende stap om in gesprek te gaan met beheerders van tunnels waar detectielussen echt niet voldoen. In de praktijk van de tunnelstandaard zie je nu al wel dat er ruimte komt voor projectspecifieke afwijkingen en er wordt al gesproken in termen van ‘standaard of gelijkwaardig’. Daar liggen kansen voor deze vorm van detectie, maar formeel zou de toepassing nu alleen kunnen in niet-rijkstunnels.”

Dit was de Onderbreking Meten is weten

Bekijk een ander koffietafelboek: