Loading...

De Onderbreking

Meten is weten

Meten is weten

Mobiele oven test brandweerbaarheid Maastunnel

Rotterdam, Stationsgebied

Veel kleine baten maken een grote

Virtual Design and Construction

Effectief voorspellen faaltijden tunneltechnische systemen

Probleemloos na uitstel openstelling

Utrecht, DOMunder

Wetsvoorstel BRO naar tweede kamer

Beheren, meten en optimaliseren

Kennisbank

Meten is weten

Ondergronds bouwen is teamwerk. Vernieuwingen zijn succesvol als we samen vraagstukken uitpluizen en doelen stellen. Tussen ‘waar gaat het om’, ‘wat gaan we doen’ en ‘wat zijn de consequenties daarvan’ moeten we flink verzamelen, meten en bepalen. 

In de wereld van de civiele techniek en ruimtelijke ordening wordt om de meest uiteenlopende redenen gemeten. Meten is onlosmakelijk verbonden met kennisontwikkeling. We verzamelen gegevens om voorspellingen te doen, of om ze juist te controleren. De betekenis van data geeft zich echter niet zomaar prijs. We hebben analyses en interpretaties nodig om de datastroom te duiden. Ook dát hoort bij meten.

Mobiele oven test brandweerbaarheid Maastunnel

April dit jaar zette Gemeentewerken Rotterdam een mobiele oven in om de brandweerbaarheid van de Maastunnel te testen. Een primeur. Het gebruik van deze oven scheelt testtijd en zorgt voor meer realistische onderzoeksdata. En de Maastunnel? Die blijkt nog steeds aardig stand te houden tegen een flinke brand.

25 mei 2012 | AUTEUR: Armand van Wijck

De mobiele oven is een geesteskindje van Efectis, Nederlands onderzoekscentrum voor brandveiligheid. “Het gaat om de allereerste mobiele oven ooit. Een kleine variant van de onverplaatsbare ovens die we in het lab gebruiken”, licht productmanager Martin Vermeer van Efectis toe. “De mobiele oven is bedoeld voor het testen van de brandwerendheid van de dragende structuren van een tunnel. Voorheen moesten onze klanten zelf proefstukken maken en die meenemen naar het lab. Daar stellen we de stukken bloot aan gesimuleerde omstandigheden ten tijde van brand. Nu we in de tunnel zelf kunnen meten, weten we zeker dat data als vochtigheid en drukspanning in het beton representatief zijn.”

Testopstelling met mobiele oven in de Maastunnel te Rotterdam. (Foto: Efectis)

De kubusvormige oven heeft een verhit oppervlak van ongeveer één vierkante meter en gebruikt propaan als brandstof. Vermeer vertelt dat de oven gemaakt is van lichtgewicht, brandwerend plaatmateriaal waardoor het apparaat gemakkelijk in positie te brengen is. “Je kunt de oven horizontaal of verticaal richten, waardoor je zowel aan de tunnelwand als aan het plafond kunt beproeven. Hij kan op iedere hoogwerker gemonteerd worden, zoals ook bij de Maastunnel gebeurd is. Daar testten we aan het plafond op vier meter hoogte”, aldus Vermeer.

“De luchtstroming in de oven wordt zodanig gereguleerd dat je over de vierkante meter die open is, een uniforme temperatuurverdeling krijgt. Zo zal het kleine beproefde oppervlak zich gedragen alsof er een groot vuur in een tunnel woedt. De opstelling is echter niet geschikt voor het testen van ventilatiesystemen en rookproductie, daar zijn andere methoden voor.”

De mobiele oven is ook voorzien van een speciale ovencamera, waarmee het mogelijk is om direct in de oven te filmen en het gedrag van de constructie te bekijken. Alle temperaturen in het beton en in de oven worden real-time opgeslagen waardoor de uitvoerder en opdrachtgever de data direct kunnen bekijken.

Testresultaten Maastunnel

De Maastunnel zal de komende jaren een grootschalige renovatie ondergaan. Gemeentewerken Rotterdam gebruikt de testresultaten van de mobiele oven om de benodigde dikte voor nieuwe, brandwerende tunnelbekleding te bepalen.

Efectis heeft twee type ovens gemaakt: een lichtere oven kan een temperatuur tot maximaal 1150°C aan, waardoor het de brandveiligheid kan testen met betrekking tot de standaard-brandkromme. De zwaardere oven kan de hoge Rijkswaterstaat-brandkromme aan, die een maximale temperatuur van 1350°C kent (zie hiernaast). Met de zwaardere oven is de Maastunnel getest.

Het testobject was het tussenplafond in het landgedeelte van de tunnel, waarboven het ventilatiekanaal zit. In de opbouw van het tussenplafond bevinden zich ook chamotte-tegels, die ten opzichte van beton meer isolerend zijn en dus mogelijk een bijdrage leveren aan de brandwerendheid van het tussenplafond.

Links het resultaat van het beton direct na blootstelling aan RWS-brandkromme gedurende 120 minuten (max. 1350 graden) – het beton gloeit nog duidelijk na. De rechter foto toont hoe het plafondgedeelte eruit ziet nadat het is afgekoeld. (Foto’s: Efectis)

De data lieten zien dat het onbeschermde tussenplafond een één uur durende Rijkswaterstaat-brand prima kan hebben, maar een twee uur durende Rijkswaterstaat-brand is zonder enige vorm van brandwerende bescherming vooralsnog niet mogelijk. Vermeer: “Na 2 uur heb je wel bijna een gat door het tien centimeter dikke beton heen gebrand, waarbij er geleidelijk stukken beton vanaf knallen. Dit fenomeen wordt spatten van beton genoemd (zie hiernaast). Dat ziet er heftig uit, maar het is het eerste stukje plafond dat opgeofferd mag worden en na een brand meteen gerepareerd kan worden zonder verdere consequenties voor het behoud van de tunnel.” Ook het tussenplafond werd een uur lang blootgesteld aan een standaard brandkromme. Daarbij bleef de betonstructuur vrijwel volledig in tact.

Stationsgebied Rotterdam

Na jaren van bouwactiviteiten is op 13 maart 2014 het vernieuwde station Rotterdam Centraal geopend. Het station is niet alleen bovengronds drastisch aangepakt; ondergronds is er gewerkt aan de aansluiting van de RandstadRail op het Rotterdamse metronet, een nieuw ondergronds metrostation, een grote fietsenstalling onder het stationsplein, de nieuwe Weenatunnel en een vijflaags parkeergarage onder het nabijgelegen Kruisplein.

De grondige aanpak van Rotterdam Centraal is onderdeel van de Nieuwe Sleutelprojecten (NSP): integrale stedelijke projecten op en rond de Nederlandse stations met een HSL-aansluiting. Groeiende reizigersaantallen vormden de aanleiding voor de grootscheepse verbouwing van Rotterdam Centraal en omgeving. De verwachting is dat het aantal reizigers dat dagelijks gebruik maakt van dit vervoersknooppunt rond 2025 zal zijn toegenomen van de huidige 110.000 tot circa 320.000. De groei komt onder meer door de aansluiting op het Europese net van hogesnelheidstreinen en de aansluiting op de lightrailverbinding RandstadRail.

Boortunnel RandstadRail

RandstadRail is de lightrailverbinding tussen Rotterdam, Den Haag en Zoetermeer. Voor het traject tussen Rotterdam en Den Haag is voor een groot deel gebruik gemaakt van de Hofpleinlijn, de voormalige heavyraillijn van de NS. Alleen voor het laatste stuk naar Rotterdam Centraal is een nieuwe drie kilometer lange ondergrondse verbinding aangelegd. Deze bestaat uit twee enkelsporige tunnels die grotendeels als boortunnel zijn uitgevoerd. Deze geboorde tunnelbuizen hebben een buitendiameter van 6,5 meter.

De nieuwe verbinding takt ter hoogte van het Sint Franciscus Gasthuis af van de Hofpleinlijn en passeert vervolgens de spoorlijn Rotterdam-Gouda (de Goudse Lijn), de A20 en het Noorderkanaal. Halverwege het tunneltracé ligt het nieuwe ondergrondse station Blijdorp. Na dit station loopt de tunnel over ruim een kilometer onder de Statenweg en kruist vervolgens het NS-emplacement van station Rotterdam Centraal. Naast dit emplacement sluit RandstadRail aan op het metrostation Rotterdam Centraal en de metrolijn naar Rotterdam-Zuid.

Station Blijdorp. (Foto: Flickr/FaceMePLS)

De boortunnel van RandstadRail is aangelegd door Saturn v.o.f., een aannemerscombinatie bestaande uit Dura Vermeer en Züblin. Het ingenieursbureau van de gemeente Rotterdam deed het vooronderzoek, schreef de bestekken en deed de aanbesteding. Daarnaast heeft het ingenieursbureau zes stations en haltes in eigen huis ontworpen en gerealiseerd.

Aanvullende maatregelen

De geboorde tunnel ligt over vrijwel de gehele lengte in het pleistocene zand. Om dit te realiseren, is tot een diepte van dertig meter geboord. Bij de aansluiting van de boortunnel op de conventioneel gebouwde tunneldelen (de startschacht bij het Sint Franciscus Gasthuis, station Blijdorp en de ontvangstschacht bij Rotterdam Centraal, die alle drie in een open bouwput zijn gemaakt) liggen de tunnelbuizen voor meer dan de helft in relatief slappe kleilagen. Hier zijn aanvullende maatregelen getroffen om ervoor te zorgen dat de tunnel voldoende stabiel ligt. Bij de startschacht is over een lengte van circa zestig meter de slappe grond vervangen door verdicht zand. Aansluitend op dit stuk is de grond over een lengte van zeventig meter versterkt met ‘mixed in place’, een techniek waarbij cement in de grond wordt geïnjecteerd.

Bij de zuidelijke aansluiting van de tunnelbuizen op station Blijdorp bestaan de tunnelwanden over een lengte van ongeveer vijftig meter niet uit betonnen segmenten, maar uit stalen buizen. Voor de overgang van het beton naar het staal, is een kom-nok verbinding toegepast. Voor de aansluiting op de ontvangstschacht bij Rotterdam Centraal is zowel een stalen tunnellining als grondverbetering gebruikt. De grondverbetering is gedaan met jetgrouten.

Boorproces

Het boorproces is in december 2005 gestart nabij het Sint Franciscus Gasthuis, aan de noordzijde van Rotterdam. Vanaf hier is in zuidelijke richting geboord naar station Blijdorp en de ontvangstschacht bij Rotterdam Centraal. Nadat in voorjaar 2007 de eerste tunnelbuis gereed was, is de tunnelboormachine weer teruggebracht naar de startschacht voor het boren van de tweede tunnelbuis. Een jaar later was deze tunnelbuis ook klaar.

Metrostation Rotterdam Centraal

Om metrostation Rotterdam Centraal geschikt te maken voor de aansluiting op RandstadRail is in 2006 begonnen met de bouw van een nieuw station. Het eerste deel was eind september 2009 gereed en vervolgens is het oude, ruim veertig jaar oude station gesloopt om het laatste deel van het nieuwe station te kunnen maken. In augustus 2010 was ook dit deel klaar en sinds dat moment rijden er metro’s tussen het nieuwe metrostation en Den Haag.

Het nieuwe station heeft twee eilandperrons, drie sporen en is rechtstreeks bereikbaar vanuit de stationshal van het treinstation en via ingangen aan het Weena en de Conradstraat. Het is ontworpen door Maarten Struijs van Gemeentewerken Rotterdam en gebouwd door Mobilis|TBI. Het contrast met het oude ondergrondse station is groot. Dit station had één slecht verlicht eilandperron en twee sporen. Het nieuwe station heeft grote perrons, hoge plafonds en veel licht en ruimte.

Bouwmethode

Voor de bouw van het nieuwe metrostation is gekozen voor de wanden-dakmethode. Aan drie zijden zijn diepwanden gemaakt tot een diepte van ruim veertig meter. Op deze diepte ligt de zogeheten Laag van Kedichem, een vrijwel waterdichte kleilaag. Aan de vierde zijde kon geen diepwand worden gemaakt, omdat hier de metrotunnel lag van de lijn naar Rotterdam-Zuid. Bovendien zaten hier grondankers van nabijgelegen gebouwen in de grond. Om de bouwkuip toch te sluiten en vrij te houden van grondwater hebben de experts van Ingenieursbureau Rotterdam aan deze zijde met vloeibare stikstof en pekel een waterdichte ijswand gemaakt. Deze vrieswand van ongeveer 50 meter breed, 40 meter diep en ruim 2,5 meter dik was zodanig vormgegeven dat het metroverkeer er tijdens de bouw door kon rijden. De wand is bijna twee jaar in stand gehouden totdat de de vloer en de wanden van het nieuwe station gereed waren.
(Foto: Via buizen wordt koudemiddel rondgepompt om de grond te bevriezen, via Mobilis)

Fietsenstalling Rotterdam Centraal

Onder het stationsplein is een grote ondergrondse fietsenstalling gebouwd voor meer dan vijfduizend fietsen. Deze stalling heeft een directe verbinding met het ondergrondse metrostation. Gebruikers kunnen hier op de metro stappen of via dit station doorlopen naar trein, bus of tram. Net als het metrostation is de stalling ontworpen door architect Maarten Struijs en gebouwd door Mobilis|TBI. Licht en kleuren zorgen voor een prettige sfeer in de stalling. Het plafond, de kolommen en de wanden zijn wit. De vloer van de hoofdroute is rood, terwijl voor de gangen met de fietsenrekken de kleuren paars, blauw, groen, geel en oranje gebruikt zijn. Dit kleurgebruik maakt het eenvoudiger om je gestalde fiets terug te vinden.

Bouwmethode

Voor de stalling is gebruikgemaakt van de wanden-dakconstructie om overlast op straatniveau zo veel mogelijk te beperken. Aan de noordkant is voor de bouwkuip gebruikgemaakt van de damwanden van het metrostation, en aan de zuidkant van de damwanden van de nieuwe Weenatunnel.

Weenatunnel

Het Weena is een drukke oost-westverbinding voor autoverkeer. Om voor voetgangers een veilige oversteek tussen het stationsplein en het nieuwe Kruisplein te kunnen maken, was het noodzakelijk om al het autoverkeer op het Weena naar ondergronds te brengen. Hiervoor is de oude tweebaanstunnel vervangen door een nieuwe 350 meter lange tunnel met twee tunnelbuizen en totaal vier rijbanen.

De bouw vergde de nodige fasering om ervoor te zorgen dat de trams en het wegverkeer konden blijven rijden tijdens de bouwwerkzaamheden. Als eerste is een overkluizing gemaakt voor de tramsporen over het tunneltracé. Terwijl het verkeer gebruikmaakte van de bestaande tunnel, is aan de zuidzijde hiervan een nieuwe tunnel gebouwd. Toen deze klaar was, is het verkeer hier doorheen geleid en is de bestaande tunnel gesloopt en vervangen door een nieuwe. Vanuit de zuidelijke tunnelbuis loopt er een ondergrondse verbindingsweg naar de Kruispleingarage en de Schouwburgpleingarage.

Kruispleingarage

De Kruispleingarage, de diepste parkeergarage van Nederland, is eind 2013 opgeleverd. Het diepste punt van deze garage ligt op twintig meter beneden NAP. De parkeergarage ligt tegenover Rotterdam Centraal, is 150 meter lang, ruim 30 breed en telt vijf verdiepingen. Er kunnen 760 auto’s in. Het garage is ontworpen door gemeentearchitect Maarten Struijs, die ook de fietsenstalling en het metrostation onder Rotterdam Centraal ontwierp.

In het dak van de Kruispleingarage is een waterberging gebouwd om bij hevige buien water uit de Westersingel tijdelijk op te vangen. Stijgt het water in deze singel meer dan tien centimeter, dan stroomt een deel van het water de berging in. Voor de waterberging is het zogeheten watershellsysteem gebruikt. Dit systeem bestaat uit lichtgewicht koepelvormige elementen waarop een betonvloer wordt gestort. De elementen worden gedragen door kunststof poten die ervoor zorgen dat het gewicht van de vloer en de grond op de waterberging gelijkmatig wordt doorgegeven naar het dak van de parkeergarage.

De Kruispleingarage is bereikbaar vanuit de Weenatunnel. In deze tunnel is een afslag die toegang geeft tot een lange ondergrondse straat met aan het einde een rotonde. Via deze rotonde kunnen auto’s de Kruispleingarage in en ook de verderop gelegen Schouwburgpleingarage. Bovenop de garage ligt het autoluwe Kruisplein. Dit plein is als verbinding tussen binnenstad en station één van de belangrijkste pleinen van de stad.

Veel kleine baten maken een grote

“Sorry plannenmakers, Nederland is af. Er valt niet meer zoveel te verbeteren.” Elisabeth Ruijgrok, adviseur omgevingseconomie bij Witteveen + Bos laat er geen misverstand over bestaan. Beleidsmakers moeten niet vreemd opkijken als een maatschappelijke kosten-batenanalyse (mkba) een negatief saldo oplevert. In Nederland is de verbeterpotentie klein. Het laaghangend fruit is al geplukt. Extra verbeteringen worden marginaler, waardoor kosten de baten al snel overstijgen.

In een mkba worden ongeprijsde welvaartseffecten zoveel mogelijk beprijsd, zodat er op basis van objectieve meetgegevens een afweging gemaakt kan worden. Elisabeth Ruijgrok voerde al veel mkba’s voor gebiedsontwikkelingstrajecten uit en moet relatief vaak tot de conclusie komen dat er sprake is van een negatief saldo. Ondanks goede intenties van degenen die maatregelen voorstellen, blijkt dan dat de baten niet opwegen tegen de kosten. In de praktijk is dat overigens lang niet altijd reden om een project dan maar niet uit te voeren. Beleidsmakers kunnen immers andere argumenten laten prevaleren zoals welvaartsverdeling, maatschappelijk draagvlak of pro memorie posten.

De ervaren adviseur die omgevingseconomie als apart specialisme op de kaart zette, wil met haar wake-upcall geen pleidooi houden om verbeterambities dan maar op te geven. Wel pleit ze voor gedegen onderzoek. “Omdat het in Nederland heel moeilijk is om baten te generen, zul je vaak baten moeten stapelen. Er zijn veel factoren die de omgevingskwaliteit beïnvloeden. Die moet je zoveel mogelijk in kaart brengen. Dat geldt zeker voor ondergrondse projecten waar je veel baten nodig hebt om de hoge kosten te rechtvaardigen.”

Ode aan de Q

Het uitvoeren van een mkba vergt precisie. Elisabeth: “In de praktijk grijp je makkelijk mis. Een boom op een verkeerde plek en het effect op de luchtkwaliteit blijft uit. Of bij infrastructurele projecten: geen betere doorstroming, dan ook geen reistijdwinst. Het begint al met het goed in kaart brengen van wat je wilt verbeteren. Door een open rioolstort weg te halen, zul je aantoonbaar minder bacteriën in het water hebben. Dat kun je vooraf bedenken. Maar als er toch al niemand zwom, heb je geen baten, geen toename van het welzijn. Of het water wordt alleen minder slecht, maar je wordt er nog steeds ziek van: wel een effect, maar weer geen baten.”

“Als de vertaling van effecten naar baten achterwege blijft, is meten niet zinvol.”

Vaak lijkt een maatregel zo voor de hand te liggen, dat er geen twijfel is over het nut. Zeker als er aantoonbaar kwaliteitseffect optreedt. Maar als de vertaling van kwaliteitseffecten naar baten achterwege blijft, is meten niet zinvol. “Je moet erg oppassen dat de maatregel geen doel op zich wordt”, zegt Elisabeth, die verder benadrukt dat de mate waarin een kwaliteitseffect optreedt de hoogte van de baten bepaalt. “Het probleem van het ongeprijsde is niet de prijs, maar de hoeveelheid. Het gaat om de dosis-effectrelatie. De dosis bepaalt de hoeveelheid verbetering die je weet te bewerkstelligen met een maatregel. De prijs die je aan een eenheid verbetering kunt hangen, kennen we wel. We weten voor verkeersstudies bijvoorbeeld precies wat de prijs per reistijduur is. Ook met allerlei andere kwaliteitseffecten hebben we in de loop der tijd voldoende ervaring opgedaan om die te kunnen beprijzen. Maar het is de hoeveelheid, de Q (kwantiteit) in de formule, die bepaalt of er ook echt sprake is van baten. Helaas is nu net de Q in de praktijk het lastigst om goed te voorspellen.”

Relevante welvaartseffecten

Elisabeth Ruijgrok ontwikkelde een denkschema om relevante welvaartseffecten van maatregelen te kunnen identificeren. Elisabeth: “Je meet de effecten die een maatregel heeft op de omgevingskwaliteit en vervolgens meet je wat de baten van het kwaliteitseffect op de omgevingskwaliteit zijn. Die baten zet je af tegen de kosten. Als je dan boven nul uitkomt, heb je een duurzaam project. Dan heb je het netto welzijn vergroot. Het schema (zie hieronder) vertelt de verhalen. De verandering van de omgeving die je weet te bewerkstelligen met de maatregelen die je neemt, is een voorbode van de baten die zouden kunnen optreden. Maar het is zeker niet vanzelfsprekend dat die baten ook daadwerkelijk optreden. Kwaliteit is nog geen baat. Wat als je met een maatregel sociale participatie bereikt? Wat heb je daar dan aan? De baat die daaruit kan voortkomen is bijvoorbeeld dat mensen in staat zijn een hoger inkomen te genereren, of dat de sociale controle toeneemt waardoor de criminaliteitskosten dalen. En altijd geldt: als een maatregel de omgeving niet beïnvloedt, dan heb je ook geen baat.”

Bron: www.omgevingseconomie.nl

Zoeken naar kleine baatjes

“Bij ondergrondse projecten zou ik geneigd zijn om alle baten los te meten en niet te kiezen voor een allesomvattend model. Zo kun je op zoek naar alle kleine, individuele baatjes. Zeker bij ondergrondse projecten heb je veel baten nodig om tot een positief saldo te komen, simpelweg omdat de kosten hoog zijn. Zo’n onderzoek vergt veel werk, maar is inherent aan het feit dat het in Nederland nu eenmaal moeilijk is om nog grote baten te genereren.”

Naarmate de omgeving complexer is, zullen er meer omgevingsfactoren in een mkba meegenomen moeten worden. Bij ondergrondse projecten in binnenstedelijke gebieden is dat evident. Elisabeth: “Voor het meten van de effecten en baten van een binnenstedelijk project zou ik kiezen voor een onderzoek in de ruimte. Dan zoek je als referentie een vergelijkbaar gebied waar de maatregel niet is genomen. Logischerwijs onderzoek je welzijnseffecten, omdat dat de reden zal zijn waarom je zo’n project overweegt. In een complexe omgeving kun je niet alle baten meten met een onderzoek naar de ontwikkeling van vastgoedprijzen. Andere aspecten die een rol spelen, zijn bijvoorbeeld de ontwikkeling van de werkgelegenheid ten opzichte van het landelijk gemiddelde. Een indicator voor de aantrekkingskracht van het stadscentrum is het hotelbezoek in de hele stad of de ontwikkeling van het winkelbestand ten opzichte van het landelijke gemiddelde. Informatie over doorstroming en reistijden zullen al beschikbaar zijn uit de verkeersstudie. En zo kun je al die individuele baten najagen en tot een afgewogen totaalbeeld komen.”

Bij het COB: Waarde van de ondergrond

Tijdens de startbijeenkomst van het platform O&O werd ‘de businesscase van de ondergrond’ al genoemd als belangrijk onderwerp voor de ontwikkeling van ondergronds bouwen in druk stedelijk gebied. Vanuit het platform is er gewerkt aan verschillende initiatieven, die in oktober 2015 zijn gecombineerd tot het project Waarde van de ondergrond. Hierbinnen wil het COB aan de hand van gerealiseerde praktijkprojecten enerzijds de harde kosten en baten uitrekenen (spoor 1 ‘Mkba’) en anderzijds de zachte aspecten rondom de besluitvorming bij investeringsbeslissingen in beeld brengen (spoor 2 ‘Governance’).

'Kan de onderdoorgang niet gewoon daar?'

Men neme een Bouw Informatiemodel (BIM), drie grote smartboards en een zaal vol stakeholders en je doet aan Virtual Design and Construction. Zo eenvoudig lijkt het op het eerste gezicht, maar niets is minder waar. De VDC-methode van Royal HaskoningDHV is een omslag in denken; een andere aanpak die lef vergt.

Volgens Royal HaskoningDHV zorgt Virtual Design and Construction (VDC) voor een breed gedragen ontwerp, minder faalkosten en een snellere doorlooptijd. “Je krijgt meer voor minder”, stelt Jeffrey Rampaart, projectmanager bij het adviesbureau.

“Bij een bouwproject heb je te maken met een keten van partijen. Iedereen streeft ernaar om een efficiënt ontwerp te creëren, waarmee het project binnen het budget, binnen de gestelde tijd en naar ieders tevredenheid kan worden gerealiseerd. Maar de schakels in de keten werken vaak relatief solitair en dat kan een efficiënt ontwerp in de weg staan. Elke partij heeft zijn eigen beleving en verwachtingen bij het project: hoe zorg je dat deze bij elkaar komen? Hoe zorg je ervoor dat iedereen die een belang heeft bij het project, meewerkt aan de oplossing? Wij denken dat je dit bereikt met een visuele methode zoals VDC.”

In beeld

VDC is ontwikkeld door Stanford University en door Royal HaskoningDHV geadopteerd en verder ontwikkeld. De methode is het best uit te leggen aan de hand van de iRoom, een ruim opgezette kamer met drie smartboards aan de muur. Hierop is tijdens een VDC-sessie voor een bouwproject een 3D-weergave van het ontwerp te zien (een BIM), evenals andere relevante informatie, zoals het Programma van Eisen of een luchtfoto van het plangebied. De deelnemers – vertegenwoordigers van alle stakeholders in het project – gebruiken de borden om ontwerpoplossingen te onderzoeken. Hoe scherp mag de bocht maximaal zijn, kunnen we nog een middenberm toevoegen, hoe ervaart een fietser de onderdoorgang? Op zulke vragen wordt ter plekke een antwoord gezocht.

De iRoom in het kantoor van Royal HaskoningDHV in Amersfoort. (Foto: RHDHV)

Het visualiseren van het ontwerp is dan ook een belangrijk aspect van VDC. Het is echter niet het enige. Ook de organisatie en het proces spelen een rol. Bij het selecteren van de deelnemers voor een VDC-sessie moet bijvoorbeeld over de organisatie worden nagedacht: je hebt alle stakeholders nodig om tot een echt integraal ontwerp te komen. Rampaart: “Met VDC werk je geïntegreerd op drie niveaus: een parallel proces vervangt het traditionele volgtijdelijke proces, je betrekt technische en niet-technische stakeholders en op productniveau integreer je zaken zoals ramingen, PvE, risicodossier, enzovoort.”

Simultaan, snel en samen

“VDC is dus meer dan het samen kijken naar een BIM. Sterker nog, het kan ook zonder BIM. Gezamenlijk nadenken over het ontwerp kan ook met flip-overs en post-its. Maar om alle stakeholders bij het proces te betrekken, moet je het ontwerp goed in beeld brengen en dat is bij de complexe projecten van tegenwoordig vrijwel onmogelijk zonder digitale hulpmiddelen”, meent Rampaart.

“De schermen zorgen er daarnaast voor dat je verschillende informatiebronnen kunt combineren. Je kunt bijvoorbeeld de uitgangspunten van het ontwerp letterlijk naast de visualisatie houden, of de huidige en geplande situatie met elkaar vergelijken. Door de visuele benadering kan bovendien iedereen meepraten, de barrière tussen technisch specialisten en beleidsmakers en bestuurders wordt veel kleiner. De klant voelt zich hierdoor meer gehoord. En misschien nog wel belangrijker: je kunt direct laten zien wat een wijziging in het ontwerp voor effect heeft, waardoor sneller keuzes gemaakt kunnen worden. Wat gebeurt er als je de onderdoorgang wat meer naar links plaatst? Is er dan nog voldoende ruimte voor een fietspad? Voor zulke wijzigingen hoef je nu niet terug naar de tekentafel. Je voert het ter plekke uit, waarna je ook gelijk het resultaat kunt bespreken. Dat werkt enorm efficiënt.”

Ideaal dus, dat VDC. Waarom zijn we nog niet massaal overgestapt? Rampaart: “Met VDC wordt het ontwerpproces een open proces, iedereen heeft inspraak. Dat schrikt sommige mensen af. De civiele bouwwereld is een conservatieve wereld, omdat de risico’s vaak groot zijn. Een radicaal andere aanpak wordt hierdoor niet direct omarmd. Je moet met een heel andere blik naar je eigen processen kijken. Daar is lef en vertrouwen voor nodig.”

Echte data

Royal HaskoningDHV gebruikt VDC nu twee jaar, en met succes. Rampaart denkt dat het bij projecten gemiddeld een kostenbesparing van tien tot dertig procent oplevert. “Daarnaast krijgt de klant een betere oplossing, omdat je de vraag nog eens tegen het licht houdt.” VDC leidde onder meer bij een alternatievenstudie voor spoorkruisingen in Ermelo tot tevredenheid van de klant. “We hebben daar de bestaande omgeving gedigitaliseerd en vervolgens de nieuwe plannen erin verwerkt”, vertelt Rampaart. “Zo ontstond er een heel nauwkeurig beeld van de toekomstige situatie. De gemeente kan het plan hiermee goed uitleggen aan het college, de gemeenteraad en inwoners.”

Het verschil met ‘gewone’ visualisaties is dat het 3D-model bij VDC gebaseerd is op de data van zowel de omgeving als het ontwerp. Ook de ondergrond wordt meegenomen. Bodem- en hydrologisch onderzoek, het DINOLoket, de GBKN en het Kadaster leveren veel van de benodigde gegevens. Maar zoals menig ondergrondse bouwer weet, blijft er altijd onzekerheid bestaan, bijvoorbeeld over de lokale bodemgesteldheid en de ligging van kabels en leidingen. Rampaart beaamt dat. “Informatie over ondergrondse infrastructuur wil inderdaad nog wel eens afwijken van de werkelijkheid. Bij VDC levert dat echter minder grote hindernissen op, omdat afwijkingen in de data veelal te klein zijn om het proces te verstoren. Bovendien zijn eventuele consequenties snel in beeld te brengen en aan te passen.”

Tijdens de VDC-sessie onderzoeken stakeholders mogelijke ontwerpoplossingen. (Foto’s: RHDHV)

Beleving

“De kracht van VDC is dat het ontwerp gaat leven. Techniek wordt beleving. Natuurlijk kunnen we de wethouder van Amersfoort vertellen wat je als automobilist ziet als je de tunnel inrijdt. Of een plaatje daarvan laten maken en hem dat laten zien. Maar als de wethouder die vraag stelt in een VDC-sessie, kun je ter plekke inzoomen op de inrit, de camera draaien en de situatie in beeld brengen. Tijdens een VDC-sessie voor een nieuwe onderdoorgang in Ermelo opperde iemand halverwege: ‘Kan de onderdoorgang niet gewoon in het midden?’. Toen hebben we het object domweg opgepakt en langs het spoor gesleept om te kijken waar hij paste. Zo kom je er ook achter wat níet kan en dat is evengoed nuttig om te weten.”

Effectief voorspellen faaltijden tunneltechnische systemen

Tegenwoordig is voorspelbaar onderhoud steeds belangrijker vanwege de overheersing van verouderende assets in de nationale infrastructuur. Om falen te voorkomen zonder onnodige investeringen, wordt er gestreefd naar zo veel mogelijk precies op tijd ingrijpen, voordat een systeem verwacht zou falen. Yoanna Nedelcheva heeft voor haar afstuderen aan de TU Delft onderzoek gedaan naar methoden voor het effectief voorspellen van faaltijden voor systemen in tunnels.

Een ontwikkeling in infrastructureel onderhoud is prestatiegericht onderhoud. Het nadeel van deze aanpak is kennisasymmetrie. Omdat de aannemer zelfstandig de onderhoudsactiviteiten definieert en verricht, deelt de klant weinig kennis. Wanneer de klant de data-eigenaar is, kan de aannemer beperkt worden in het inzichtelijk maken van systeemproblemen, omdat ze vaak geen toegang tot de bijbehorende data hebben.

Data-gestuurde prognoses zijn een veelbelovende techniek om bovenstaande uitdagingen te beheersen. Ten eerste, het analyseert het faalgedrag van systemen. Daarom leveren de resultaten van de analyses de benodigde informatie om voorspelbaar onderhoud mogelijk te maken. Ten tweede, een dergelijke analyse kan helpen om de communicatie tussen de klant en de aannemer te optimaliseren wanneer de klant de data-eigenaar is. De klant kan data-gestuurde prognostische analyses verrichten en zijn analyseresultaten delen met de aannemer. Dat helpt de aannemer om zijn plannen te optimaliseren, zonder de gegevens van de klant direct te zien.

De resultaten van analyses de benodigde informatie om voorspelbaar onderhoud mogelijk te maken.

Tunnels in Nederland hebben de hoge beschikbaarheidseis van 98%. Verder hebben de kritieke systemen binnen tunnels vaak een complex faalgedrag. Ze worden beïnvloed door diverse externe factoren en andere systemen waarvan ze afhangen. Daarom is voorspelbaar onderhoud relevant en kunnen prognoses nuttige informatie over tunnelsystemen leveren.

Onderzoek

De vraag is: welke categorie van data-gebaseerde prognostische methoden kan worden gebruikt voor het effectief voorspellen van faaltijden voor systemen in tunnels? Om een antwoord hierop te geven, is onderzoek verricht aan de hand van de data van vier grote tunnels in Nederland over een periode van acht jaar. Rijkswaterstaat is daarbij de data-eigenaar. Falen, operatie, storingen en conditiemonitoring worden als datapunten in eventlogs geregistreerd.

Twee categorieën prognostische methoden zijn geselecteerd als passende methodiek voor de gegeven context en het dataformat. Simpele tijdreeksmethodes (STRM) analyseren alleen op basis van faaltijden. Deze methodes zoeken een trend en extrapoleren de trend in de toekomst om faalvoorspellingen te maken. Proportional hazards modelling (PHM) gaat verder door rekening te houden met andere gebeurtenissen en en te zoeken naar het effect daarvan op faalgedrag.

De gekozen STRM zijn twee vaak gebruikte technieken binnen betrouwbaarheidstheorie: de homogene en niet-homogene poissonprocessen, en drie bekende voorspellingstechnieken, namelijk simple exponential smoothing, de Holt-methode en de Holt-Winters-methode. Voor PHM wordt de veel gebruikte klassieke Cox-methode toegepast, evenals de varianten met lasso, ridge en elastic net regularisation. De geregulariseerde varianten hebben als doel om de relatieve effecten van andere gebeurtenissen op faalgedrag te corrigeren in gevallen waar het model weinig faalregistraties heeft om van te leren.

Resultaten

Om de prestaties van deze methoden te meten, is gekeken naar de toepassing op pompsystemen. Dit zijn kritieke systemen in tunnels die direct van invloed zijn op de algehele beschikbaarheid van een tunnel. Hierbij is een faal gedefinieerd als ‘water op het wegdek’; ook als de hoeveelheid water klein is en het de verkeerdoorstroming niet verstoort.

De prestaties van de methoden zijn gemeten op basis van hun voorspellende kracht. Die bestaat uit twee componenten, namelijk de gemiddelde kwadratische fout van de faalvoorspellingen en de dekkingskans van hun betrouwbaarheidsinterval. De gemiddelde kwadratische fouten per methode voor de vier tunnels zijn verbeeld in de onderstaande figuur. De PHM-methoden presteren opmerkelijk goed met kleine gemiddelde kwadratische fouten en hoge dekkingskansen. Voor 93% van de falen was er een faalindicatorgebeurtenis. Verder vonden 71% van deze faalindicaties plaats binnen een paar uur voor de faalgebeurtenis. Deze informatie zou voorspelbaar onderhoud faciliteren. STRM daarentegen, presteren slecht vanwege hun grote gemiddelde kwadratische fouten en kleine dekkingskansen. Voor drie van de vier tunnels was de gemiddelde kwadratische fout vergelijkbaar met de gemiddelde tijd tussen twee falen. Daarom zijn STRM voor deze context geen effectieve faalvoorspellingsmethoden.

Concluderend is PHM de prognostische categorie die effectief kan worden toegepast voor systemen in tunnels met eventlogs. Verder heeft PHM de toegevoegde waarde van aanvullende informatie over andere gebeurtenissen. Die kan worden gebruikt om het fysieke systeem beter te begrijpen en te onderhouden. Daarnaast kan het verschil van de effecten tussen de faalindicatoren numeriek vergeleken worden. Deze verschillen kunnen gebruikt worden om de kansschattingen in betrouwbaarheidsanalyses (zoals FMECA en FTA) objectiever te maken en daardoor de onderhoudsplannen te optimaliseren.

De verticale as toont de fouten in dagen (400 tot -300 dagen), de horizontale as geeft de falen in de originele volgorde weer. Het is duidelijk te zien dat de PHM-methoden (de laatste vier kolommen) goed presteren: de faalindicaties kloppen zeer goed met de  daadwerkelijke falen. (Bron: scriptie Yoanna Nedelcheva)

Salland-Twentetunnel functioneert probleemloos na uitstel openstelling

Op 29 augustus 2015, bijna negen maanden later dan gepland, ging de Salland-Twentetunnel in Nijverdal open voor het wegverkeer. Daarmee is de gecombineerde spoor- en autotunnel volledig in gebruik. Het treinverkeer rijdt al sinds voorjaar 2013 door de tunnel. Eelco Negen van Rijkswaterstaat legt uit wat er aan de hand was bij de autotunnel, hoe de problemen zijn opgelost en wat de leerpunten zijn.

“Volgens de oorspronkelijke planning zou de autotunnel half december 2014 opengaan”, vertelt Eelco Negen, die sinds maart 2015 projectmanager is van de combitunnel. “Dat was een heel krappe planning. Eind oktober werd duidelijk dat we die niet zouden halen. Alle tunneltechnische en verkeerstechnische installaties waren inmiddels aangebracht en we waren volop bezig met testen. Daarbij bleek dat de verbinding tussen de installaties en de verkeerscentrale in Wolfheze – van waaruit de tunnel bediend moest worden – niet functioneerde. Alsof je internetverbinding eruit ligt, maar dan in het groot met eindeloos veel ingewikkelde softwareprotocollen die niet goed communiceren met de ‘routers’. Daarmee hadden we een serieus probleem, omdat we vanuit de verkeerscentrale alle techniek en procedures nog moesten testen. Door de verbindingsproblemen kon dat niet, en het ontwerp bood ook niet de mogelijkheid om de testen lokaal uit te voeren.”

Terug naar af

“Er zat dan ook niets anders op dan terug naar af te gaan en alle instellingen, prioriteringsregels en veiligheidsprotocollen stap voor stap te doorlopen en te testen. Begin februari 2015 waren we daarmee klaar en hadden we een betrouwbare verbinding die goed werkte met alle software en tunnel- en verkeerstechnische installaties. Pas toen konden we het resterende testprogramma doorlopen.”

“Een dergelijk testprogramma is heel uitgebreid”, legt Negen uit. “Het bestaat in grote lijnen uit twee onderdelen: testen gericht op de techniek en testen waarbij wordt gekeken naar de samenhang tussen de techniek, de procedures en de bediening door de tunneloperators. Bij de technische testen ga je eerst na of elke deelinstallatie in de tunnel het doet. Als dat het geval is, kijk je of het integrale systeem functioneert. Dat is een enorme klus, aangezien er in de tunnel meer dan vijftig verschillende installaties zitten. Bij een calamiteit, zoals een autobrand in de tunnel, moeten die installaties perfect met elkaar samenwerken. De slagbomen om de tunnel af te sluiten kunnen bijvoorbeeld pas worden neergelaten als de verkeerslichten voor de slagbomen op rood zijn gezet. Ondertussen moet de blusinstallatie in gereedheid zijn gebracht, moet het verlichtingsniveau omhoog en moeten de ventilatoren de vrijkomende rook in de goede richting gaan afvoeren. Al deze samenwerkingsstappen moesten we controleren. Vervolgens zijn we de tunneloperators gaan trainen en hebben we alle procedures en de bediening getest.”

Systematisch

“De essentie van een testprogramma is protocollen volgen en uiterst systematisch werken: je moet iedere stap zorgvuldig doorlopen, opschrijven wat eruit komt en vervolgens eventuele fouten herstellen. Daardoor is het testen een vrij langdurig traject. Daar zit natuurlijk niemand op te wachten als een project al is uitgelopen. Ik heb echter de ervaring dat het overslaan van stappen in een later stadium tegen je werkt. De kans neemt bijvoorbeeld enorm toe dat je dan na de openstelling met allerlei kinderziektes te maken krijgt. Tegelijkertijd begrijp ik ook wel dat een projectorganisatie onder druk van de omgeving soms probeer t om op een creatieve manier de duur van de testperiode te verkorten. Dat is prima zolang het er maar niet toe leidt dat stappen worden overgeslagen. Zo ben ik erg blij dat we in Nijverdal het testprogramma zorgvuldig en volledig hebben doorlopen. Ik ben er namelijk van overtuigd dat dit ervoor heeft gezorgd dat de tunnel sinds de opening probleemloos functioneert en goed te bedienen is.”

“Uiteindelijk hebben we eind juni 2015 de testperiode afgerond, met als laatste onderdeel een eindoefening met alle hulpdiensten. Daarna moesten we alleen nog de openstellingsvergunning krijgen. Een week na de oefening hebben we daarvoor alle resterende documenten aangeleverd. Samen met de gemeente Hellendoorn en alle andere betrokken partijen hebben we vervolgens een datum voor de opening vastgesteld, rekening houdend met de verschillende stappen van het vergunningverleningstraject, de zomervakantie en nog wat speling voor onverwachte ontwikkelingen. Zo zijn we uitgekomen op 29 augustus 2015. Het in gezamenlijk overleg vaststellen van de openingsdatum vind ik erg belangrijk, omdat je hiermee voorkomt dat er verschillende verwachtingen ontstaan.”

Veranderingen

Terugkijkend op het project ziet Negen duidelijk waar het aan schortte: “De hele krappe planning betekent dat je zeer weinig speelruimte hebt; er hoeft maar iets heel kleins mis te gaan om uit te lopen. Daar komt bij dat er sinds de start van het project nog allerlei grote veranderingen zijn doorgevoerd. Denk aan de invoering van de landelijke tunnelstandaard en extra eisen op het gebied van cybersecurity. Mijn ervaring is dat dit soort wijzigingen bij ICT-projecten dodelijk zijn. Het is een beetje zoals met betonnen constructies. Als je beton hebt gestort, kun je geen wapeningsstaal meer toevoegen. Bij de ontwikkeling van software geldt min of meer hetzelfde. Heb je eenmaal een systeemontwerp vastgesteld en ben je begonnen met het softwareontwerp, dan is het uiterst moeilijk om nog veranderingen door te voeren.”

“Besluit je toch tot wijzigingen, dan moet je heel goed analyseren welke gevolgen die kunnen hebben”, zegt Negen. “Wat zijn bijvoorbeeld de extra risico’s en wat betekenen die voor de planning? In de praktijk wordt zo’n impactanalyse lang niet altijd gemaakt. En als hij wel wordt gemaakt, wordt toch nog vaak vastgehouden aan de oorspronkelijke planning. Voor een deel hangt dat samen met de optimistische blik van ingenieurs. Zij gaan er meestal vanuit ‘dat het ondanks de veranderingen wel zal lukken’. Daarbij verliezen ze uit het oog dat de risico’s ondertussen veel groter zijn geworden. Ik denk dan ook dat we op dat vlak echt kritischer moeten worden en ons minder moeten laten verleiden om vast te blijven houden aan veelal te strakke planningen.”

Ondergronds schatkamer Domplein

Op het Utrechtse Domplein is een ondergronds publiekscentrum gebouwd over en om archeologische overblijfselen heen. Zo blijft belangrijk archeologisch erfgoed in situ bewaard, terwijl het tegelijkertijd toegankelijk is voor publiek. Het publiekscentrum, DOMunder en ook wel Schatkamer Domplein II genoemd, is sinds juni 2014 open en toont tweeduizend jaar geschiedenis van het Domplein. Tal van 3d-reconstructies, foto’s en films laten zien hoe het gebied er vanaf de Romeinse tijd heeft uitgezien.

DOMunder is aangelegd op de plek waar archeologen in de jaren dertig en veertig van de vorig eeuw hebben gegraven. Alleen in deze ‘geroerde grond’ van het Domplein – dat een van de drieëntwintig rijksarcheologische monumenten in Nederland is – mocht opnieuw worden gegraven. Het betreft een gebied van circa 350 vierkante. De aanwezigheid van de vele archeologische overblijfselen in de grond onder het Domplein bemoeilijkte de bouw van het publiekscentrum en zorgde voor onzekerheid. Zo kon elke onverwachte vondst in de ondergrond invloed hebben op de constructie en om nieuwe oplossingen vragen.

Afgebakend gebied

Voorafgaand aan de bouw is een uitgebreide nulmeting gemaakt van de staat van de omliggende bebouwing, waaronder de 112 meter hoge Domtoren. Hiervoor is onder meer gebruikgemaakt van drones met camera’s. Vervolgens is met informatie over eerdere deelopgravingen, grondradar, een 3D-laserscan, sonderingen en nieuwe proefsleuven en –ontgravingen het werkgebied nauwgezet in kaart gebracht. Dat maakte het mogelijk om zonder verstoring van de archeologische overblijfselen een damwand in de grond te drukken rondom het afgebakende gebied.

Toch zijn er tijdens de werkzaamheden interessante vondsten gedaan. Zo werden skeletten, munten, een grafsteen uit 1397 van een vicaris van de Domkerk. Deze zijn nu voor de bezoekers van het centrum te bewonderen.

Dakconstructie

De volgende stap was het aanbrengen van de dakconstructie. Deze bestaat uit een betonnen stempelraam met uitsparingen voor een aantal glasvensters. Voor deze constructie is gekozen, omdat onder het stempelraam de archeologische ontgravingen konden worden gedaan – waarbij de grond via de uitsparingen werd afgevoerd – en het stempelraam daarnaast de mogelijkheid bood om de bouwput snel af te dekken als het Domplein beschikbaar moest zijn voor grootschalige evenementen zoals de opening van de Vrede van Utrecht. Uiteindelijk is het stempelraam geïntegreerd in het definitieve betondek.
De dakconstructie steunt op een aantal uit 1480 daterende pilaren van het middenschip van de Domkerk, dat in 1674 door een storm werd verwoest. Het dak rust daarnaast op de damwand en drie extra toegevoegde funderingspalen. Deze extra palen maakten het mogelijk dat de dikte van het betondek kon worden beperkt tot 350 millimeter en bij niet-dragende pijlers zelfs tot 200 millimeter.

Bouwkundige maatregelen

De archeologen hebben tot een diepte van vijf meter onder het maaiveld de geschiedenis blootgelegd. Om te zorgen dat er bij de opgravingen niets mis ging, zijn diverse bouwkundige maatregelen genomen. Zo is vooraf met groutinjecties en ijzeren pinnen de stabiliteit van een romaanse constructie van veldkeien veiliggesteld. Verder werd de vochthuishouding van de kleilagen continu in de gaten gehouden en waren vooraf compensatiemaatregelen vastgesteld zodat bij een eventuele calamiteit direct kon worden ingegrepen.

Tweeduizend jaar geschiedenis

In DOMunder wordt nu tweeduizend jaar geschiedenis verteld. Het verhaal omvat de Romeinse tijd vanaf het jaar 47, de kerstening en kerkenbouw door Willibrord (695 ), de inval van de Noormannen (920), de bouw van de Dom (1023) en de storm die het middenschip vernielde (1674). In de blootgelegde kleilagen zijn de asresten aan te wijzen van het door Germanen verwoeste castellum tijdens de opstand in het jaar 69.

Wetsvoorstel voor basisregistratie ondergrond (BRO) naar Tweede Kamer

In december 2008 besloot het toenmalige kabinet tot de invoering van een basisregistratie ondergrond (BRO): een nationale databank met gegevens over de ondergrond. Een wetvoorstel hierover ligt nu bij de Tweede Kamer.

15 januari 2014

Op 10 januari jl. heeft minister Schultz van Haegen (IenM) een wetsvoorstel naar de Tweede Kamer gestuurd dat voorziet in een basisregistratie met bodem- en ondergrondgegevens (BRO). Het gaat hierbij om gegevens over de geologische en bodemkundige opbouw van de ondergrond, ondergrondse constructies en gebruiksrechten in relatie tot de ondergrond. Ondergrondse (delen van) bouwwerken als parkeergarages en kelders of infrastructuur als tunnels vallen buiten het bereik van de basisregistratie. Dat geldt eveneens voor kabels en leidingen in de ondergrond, waarvoor registratie al via de Wet informatie-uitwisseling ondergrondse netwerken (WION) geregeld is.

De basisregistratie bouwt voort op twee bestaande landelijke systemen: DINO van TNO, met geowetenschappelijke gegevens over de diepe en ondiepe ondergrond van Nederland, en BIS van Alterra, waarin kaarten zijn opgenomen over verschillende aspecten van bodem en grondwater. Hierdoor bevat de BRO reeds gegevens vanaf het moment van oprichting.

Betrokken partijen

De Minister van Infrastructuur en Milieu is de houder van de basisregistratie ondergrond. Het operationeel beheer is in handen van de Geologische Dienst Nederland, onderdeel van TNO. De primaire verantwoordelijkheid voor het leveren van relevante gegevens ligt bij de bronhouders. Dat zijn de bestuursorganen die in het kader van de uitvoering van een publiekrechtelijke taak of bij de uitvoering van werkzaamheden gegevens verkrijgen die in BRO thuishoren. Bijvoorbeeld gemeenten die voor het opstellen van een bestemmingsplan bodemonderzoek (laten) uitvoeren of een provincie die een watervergunning voor het onttrekken van grondwater verleent.

Voor bestuursorganen betekent de BRO dat zij gegevens over de ondergrond, die onder het bereik van de BRO vallen, verplicht aan de BRO moeten aanleveren. Dat geldt echter alleen voor nieuwe gegevens die dateren van na de inwerkingtreding van de voorgestelde wet.

Gebruik

Aangezien de BRO gratis via internet toegankelijk is, kan iedereen van de gegevens gebruikemaken. Bestuursorganen krijgen de plicht om van de BRO gebruik te maken wanneer zij een gegeven of model nodig hebben dat daarin als authentiek is opgenomen. In de wet ligt vast welke gegevens van de basisregistratie authentiek zijn. Authentieke gegevens en modellen zijn onderworpen aan intern en extern kwaliteitsonderzoek, zodat ze zonder nader onderzoek bij de uitvoering van publiekrechtelijke taken te gebruiken zijn.

Burgers en bedrijven hoeven overheden geen gegevens meer te verstrekken die reeds als authentiek gegeven in de BRO zijn opgenomen (met uitzondering van enkele gevallen). Maar een bedrijf dat voor een vergunningaanvraag voor de uitvoering van een werk gegevens over de ondergrond nodig heeft, kan daarbij niet volstaan met een verwijzing naar de BRO: het bedrijf dient zelf te beoordelen welke gegevens uit de BRO het daarvoor wenst te gebruiken.

Beheren, meten en optimaliseren

Vanuit het Network Operation Center (NOC) in Oss beheert SPIE allerlei telecommunicatienetwerken. Operators bewaken de netwerken dag en nacht en sturen monteurs op pad bij (dreigende) storingen. Volgens Jacco Saaman, Business Development & Innovation, biedt het NOC ook kansen voor live monitoring van installaties en procesoptimalisaties op basis van big data analyses.

“Met de ontwikkeling van zogeheten smart cities wordt supersnelle glasvezelinfrastructuur steeds belangrijker. Dynamische route-informatiesystemen, intelligente openbare verlichting, actuele reisinformatie bij haltes van openbaar vervoer, energiemonitoringsystemen en systemen voor het op afstand bewaken en bedienen van sluizen, bruggen en tunnels vragen om snel en betrouwbaar dataverkeer. Daar zorgen wij voor door de netwerken continu in de gaten te houden en direct in te grijpen als wij een verminderde werking of storing zien of een storingsmelding ontvangen van een klant”, vertelt Ad Schippers, manager van de businessunit Network Solutions van SPIE.

In het NOC in Oss zitten circa acht operators achter bureaus met drie beeldschermen. Tegenover hen staat een paneel met enorme schermen, dat vrijwel de gehele breedte van de ruimte inneemt. Van hieruit beheren zij in ploegendiensten vierentwintig uur per dag en zeven dagen per week voor diverse klanten kabelnetwerken voor data-, telecommunicatie en kabeltelevisie. Ook houden ze de gas-, water- en elektriciteitsnetwerken van diverse recreatieparken in de gaten.

Het Network Operation Center (NOC) in Oss. (Foto: SPIE)

Nieuwe kansen

Naast het beheren en operationeel houden van de netwerken zelf, monitort SPIE vanuit het NOC ook steeds vaker actieve netwerkapparatuur. Schippers: “In steeds meer netwerkapparatuur zijn alarmgrenzen ingebouwd die het mogelijk maken om te zien of een apparaat het einde van zijn levensduur nadert. Als we dat zien, vervangen we de apparatuur preventief om uitval te voorkomen. Op een vergelijkbare wijze monitoren we ook steeds vaker installaties die aan het netwerk zijn verbonden en zijn voorzien van sensoren. Door die sensoren kunnen we op afstand vaststellen hoe ze functioneren.”

Zijn collega Saaman vult aan: “De mogelijkheid om installaties live en op afstand te volgen, biedt veel nieuwe kansen. Neem de ventilatoren in een verkeerstunnel. In protocollen is vastgelegd onder welke omstandigheden ze inschakelen, bijvoorbeeld als de snelheidsverschillen tussen twee rijbanen boven een bepaalde waarde komen. In de praktijk blijken de regelparameters zo scherp geformuleerd, dat de ventilatoren vaak aangaan. Dat kost veel energie. Ik ben ervan overtuigd dat we dit soort regelingen op termijn kunnen verbeteren als we vanuit een NOC alle operationele data verzamelen en analyseren.”

Cyber security

Als voorbereiding op deze nieuwe activiteit werkt SPIE onder andere samen met ECN en TNO. Deze kennisinstellingen ontwikkelen slimme algoritmes om tot verbetervoorstellen te komen. Ook heeft SPIE al een aantal experts aangetrokken die over een helikopterview beschikken en goed zijn in het ontleden van vraagstukken en het vinden van logische verbanden. Vaardigheden die in de ogen van Saaman vereist zijn om big data goed te kunnen analyseren. Toch is het bedrijf volgens hem nog niet helemaal klaar voor optimalisaties op basis van big data analyses: “Als je gaat werken met data die voor de bediening van infrastructuur wordt gebruikt, moet je de cyber security ontzettend goed hebben geregeld. We zijn op dit gebied al een heel eind op weg –we zijn bijvoorbeeld hard bezig met de ISO-27001-certificering – maar moeten nog wel een aantal stappen zetten.”

Openbare netwerken

Saaman vervolgt: “Vooral operationele hacking moet je te allen tijde weten te voorkomen. Stel je het nachtmerriescenario maar voor dat een hacker een brug openzet zonder de stoplichten te activeren en de slagbomen neer te laten. De vrees voor dit soort gebeurtenissen is onder andere de reden dat Rijkswaterstaat een eigen glasvezelnetwerk heeft voor de bediening van al zijn infrastructuur en installaties. Toch verwacht ik dat er een moment komt waarop organisaties als Rijkswaterstaat gebruik gaan maken van openbare netwerken. Niet alleen omdat specialisten op het gebied van cyber security schaars zijn, maar ook omdat netwerkbeheer en data-analyse niet tot hun kernactiviteiten behoren. Door deze activiteiten bij een gespecialiseerde partij onder te brengen, kunnen ze zich volledig richten op de dingen waar ze goed in zijn. En het bijkomende voordeel is dat ze niet hoeven te investeren en geen personeel in dienst hoeven te nemen voor het dag en nacht bewaken van het netwerk.”

Slimme kabels

Met nieuwe technieken en sensoren verandert een kabel van transportmiddel naar informatiebron. Zo kan een glasvezelkabel dienst doen als thermometer of deformaties doorgeven. Fugro ontwikkelde een systeem waarbij tot zestien sensoren via glasvezel verbonden kunnen worden met een optisch meetapparaat, een zogeheten interrogator. Op die manier kunnen voor lange tijd trillingen, hoekverdraaiingen (kanteling), buiging (microrek), geluid en druk worden gemeten, wat inzicht geeft in de levensduur van een constructie.
>> Lees artikel ‘Veilige constructies door slimme glasvezelsensoren’ (pdf, 1MB)

Kennisbank

Artwork: "Library" by Lori Nix | www.lorinix.net

Dit was de Onderbreking Meten is weten

Bekijk een ander koffietafelboek: