Loading...

De Onderbreking

Meten is weten

Meten is weten

Volgende stap bij gebruik inspectietechnieken

Rotterdam, Stationsgebied

Aantoonbare veiligheid met standaard ICT proces

Interactief met bodeminformatie

Afstudeeronderzoek: datagedreven onderhoud rijkswegtunnels

3D-scan brengt vervormingen snel in beeld

Maastricht, A2 Maastricht

Virtual Design and Construction

SOS: Meer meten met infrarood

Kennisbank

Meten is weten

Ondergronds bouwen is teamwerk. Vernieuwingen zijn succesvol als we samen vraagstukken uitpluizen en doelen stellen. Tussen ‘waar gaat het om’, ‘wat gaan we doen’ en ‘wat zijn de consequenties daarvan’ moeten we flink verzamelen, meten en bepalen. 

In de wereld van de civiele techniek en ruimtelijke ordening wordt om de meest uiteenlopende redenen gemeten. Meten is onlosmakelijk verbonden met kennisontwikkeling. We verzamelen gegevens om voorspellingen te doen, of om ze juist te controleren. De betekenis van data geeft zich echter niet zomaar prijs. We hebben analyses en interpretaties nodig om de datastroom te duiden. Ook dát hoort bij meten.

'We kunnen de BV Nederland een dienst bewijzen'

Het permanent inzetten van inspectietechnieken om het beheer van (ondergrondse) kunstwerken te verbeteren of vergemakkelijken, is nog geen gemeengoed. De snelle ontwikkelingen in de ICT, waardoor veel grotere hoeveelheden data snel en gemakkelijk kunnen worden verwerkt, maken wel veel meer mogelijk. Michiel Post en Ingar Luttik, twee van de drie directeuren van Nebest, constateren dat de tijd rijp is voor een volgende stap.

Juni 2013

“Inspecties worden vooral ingezet in de bouwfase en bijvoorbeeld om aan te tonen dat renovatie of vervanging nodig is. Je zou een stap verder kunnen gaan door duurzaamheidsparameters te meten gedurende de levensduur van een kunstwerk. Technisch is er al veel mogelijk, maar het valt nog niet mee opdrachtgevers te overtuigen dat het zinvol is”, aldus Michiel Post. “Toch denk ik dat we de BV Nederland daarmee een dienst zouden bewijzen. Bij tunnels kun je bijvoorbeeld vervorming meten. Elke geotechnicus weet dat zetting plaatsvindt. Dat kun je ook eens per jaar meten, maar dan heb je geen gegevens over bijvoorbeeld seizoensinvloeden of gebeurtenissen in de omgeving. Continu meten lijkt duur, maar kan een relevant systeem zijn.”

“Het valt op dat we in Nederland sterk op de theorie vertrouwen. Analyse van het feitelijk functioneren – hoe stevig is het nou écht – vindt veel minder plaats, terwijl het best zou kunnen. Je ziet het bijvoorbeeld terug in het ijkdijkproject, waarbij met sensoren wordt gemeten hoe een dijk onder bepaalde omstandigheden reageert. Met tunnels zouden we ook die kant op kunnen. In de civiele techniek is er niet van nature de houding om het gelijk van de sommetjes ook in de praktijk te willen bewijzen. Daar staat tegenover dat iedere beheerder zich meer en meer bewust is van de risico’s die zijn gebruikers lopen.”

ICT maakt het verschil

Ingar Luttik: “Meetdata zijn dankzij ICT toegankelijker. We kunnen veel meer data verstouwen. Eerst konden we alleen aflezen, daarna de data mee naar huis nemen en nu kunnen we op afstand realtime aflezen. Er zijn al systemen waarmee je een tunnel in z’n geheel kunt scannen door erdoorheen te rijden. Je combineert dan visuele inspectie met infrarood en laser. Dat levert elke keer een totaalbeeld op dat je als het ware over de vorige meting heen kunt leggen. Je kunt ook permanent meten en daar een signalering aan koppelen als bepaalde waarden overschreden worden. Kortom, je kunt de werkelijkheid bijhouden, zowel de degradatie op termijn als acute ontwikkelingen. Een calamiteit als het opdrijven van de Vlaketunnel had je met het juiste permanente inspectiesysteem vermoedelijk kunnen zien aankomen.”

Dat inspectietechnieken nog weinig of niet als beheerinstrument worden gebruikt, heeft onder meer te maken met kinderziektes uit het recente verleden. Michiel Post: “De beschikbare systemen moeten nog verder ontwikkeld worden en betrouwbaarder worden. We hebben bijvoorbeeld bij diverse tunnels gezien dat valse meldingen van hoogtedetectie de geloofwaardigheid van beheer op afstand aantasten.”

“Tegelijkertijd zien we al wel dat we in een beperkte pilot permanente inspectie toepassen ten aanzien van chloride-indringing bij de Westerscheldetunnel, omdat dat daar als reële bedreiging wordt gezien. De ultieme vraag is immers of een kunstwerk veilig beschikbaar is. Dat wordt meer en meer bepaald door een integrale benadering, waarbij inventarisatie van de grootste risico’s vanzelf tot de meest rationele uitrol leidt. In theorie kun je een heel systeem continu bewaken. De risico’s bepalen de keuzes daarin.”

Sluiskiltunnel
Nebest is onder meer actief bij de Sluiskiltunnel. Het bedrijf houdt daar toezicht op het boorproces, waarbij recent de eerste mijlpaal werd bereikt. Na ongeveer drieënhalve maand boren, arriveerde tunnelboormachine Boorbara op 15 mei jl. aan de overkant van het Kanaal van Gent. Daarmee is de noordbuis (1140 meter lang) voor een groot deel af. Onderstaande video legt het boorproces uit:

Betrekkelijk nieuw

Inspectie van kunstwerken is nog betrekkelijk nieuw, maar neemt in belang toe naarmate Nederland meer oudere constructies telt. “Toen Nebest vijfentwintig jaar geleden met inspecties van kunstwerken begon, was er nog geen sprake van een systematische landelijke aanpak. Wij hebben nog meegeholpen aan het opzetten van het Data Informatiesysteem Kunstwerken (DISK), weet ik uit overlevering”, vertelt Michiel Post. “Inmiddels wordt er systematisch gewerkt vanuit een analysekader, waar de faalkans uitgangspunt is voor de aanpak. De mbo-opgeleide visueel inspecteurs van vroeger zijn nu instandhoudingsadviseurs met een hbo-opleiding. Zij analyseren en adviseren vervolgens over de wenselijke aanpak.”

“Visueel inspecteren is nog steeds de basis, maar kan aanleiding geven voor nader onderzoek met allerlei verschillende inspectietechnieken. Langdurig onderzoek naar zettingen kun je doen met landmeetkundig gereedschap, maar inmiddels ook met geavanceerde sensoren.”

Technische ontwikkelingen

De belangrijkste ontwikkelingen zijn ICT-gerelateerd. Het gebruik van betonradar is niet nieuw, maar toepassing met behulp van een handzaam apparaat, waarbij de dataverwerking in het apparaat zelf plaatsvindt, is een optimalisatie die te danken is aan ontwikkelingen in de ICT. “Innovatie zie ik vooral in gebruik en analyse”, zegt Ingar Luttik. “We hebben het niet echt over noviteiten, anders dan dat verschillende technieken geïntegreerd worden.”

Stationsgebied Rotterdam

Na jaren van bouwactiviteiten is op 13 maart 2014 het vernieuwde station Rotterdam Centraal geopend. Het station is niet alleen bovengronds drastisch aangepakt; ondergronds is er gewerkt aan de aansluiting van de RandstadRail op het Rotterdamse metronet, een nieuw ondergronds metrostation, een grote fietsenstalling onder het stationsplein, de nieuwe Weenatunnel en een vijflaags parkeergarage onder het nabijgelegen Kruisplein.

De grondige aanpak van Rotterdam Centraal is onderdeel van de Nieuwe Sleutelprojecten (NSP): integrale stedelijke projecten op en rond de Nederlandse stations met een HSL-aansluiting. Groeiende reizigersaantallen vormden de aanleiding voor de grootscheepse verbouwing van Rotterdam Centraal en omgeving. De verwachting is dat het aantal reizigers dat dagelijks gebruik maakt van dit vervoersknooppunt rond 2025 zal zijn toegenomen van de huidige 110.000 tot circa 320.000. De groei komt onder meer door de aansluiting op het Europese net van hogesnelheidstreinen en de aansluiting op de lightrailverbinding RandstadRail.

Boortunnel RandstadRail

RandstadRail is de lightrailverbinding tussen Rotterdam, Den Haag en Zoetermeer. Voor het traject tussen Rotterdam en Den Haag is voor een groot deel gebruik gemaakt van de Hofpleinlijn, de voormalige heavyraillijn van de NS. Alleen voor het laatste stuk naar Rotterdam Centraal is een nieuwe drie kilometer lange ondergrondse verbinding aangelegd. Deze bestaat uit twee enkelsporige tunnels die grotendeels als boortunnel zijn uitgevoerd. Deze geboorde tunnelbuizen hebben een buitendiameter van 6,5 meter.

De nieuwe verbinding takt ter hoogte van het Sint Franciscus Gasthuis af van de Hofpleinlijn en passeert vervolgens de spoorlijn Rotterdam-Gouda (de Goudse Lijn), de A20 en het Noorderkanaal. Halverwege het tunneltracé ligt het nieuwe ondergrondse station Blijdorp. Na dit station loopt de tunnel over ruim een kilometer onder de Statenweg en kruist vervolgens het NS-emplacement van station Rotterdam Centraal. Naast dit emplacement sluit RandstadRail aan op het metrostation Rotterdam Centraal en de metrolijn naar Rotterdam-Zuid.

Station Blijdorp. (Foto: Flickr/FaceMePLS)

De boortunnel van RandstadRail is aangelegd door Saturn v.o.f., een aannemerscombinatie bestaande uit Dura Vermeer en Züblin. Het ingenieursbureau van de gemeente Rotterdam deed het vooronderzoek, schreef de bestekken en deed de aanbesteding. Daarnaast heeft het ingenieursbureau zes stations en haltes in eigen huis ontworpen en gerealiseerd.

Aanvullende maatregelen

De geboorde tunnel ligt over vrijwel de gehele lengte in het pleistocene zand. Om dit te realiseren, is tot een diepte van dertig meter geboord. Bij de aansluiting van de boortunnel op de conventioneel gebouwde tunneldelen (de startschacht bij het Sint Franciscus Gasthuis, station Blijdorp en de ontvangstschacht bij Rotterdam Centraal, die alle drie in een open bouwput zijn gemaakt) liggen de tunnelbuizen voor meer dan de helft in relatief slappe kleilagen. Hier zijn aanvullende maatregelen getroffen om ervoor te zorgen dat de tunnel voldoende stabiel ligt. Bij de startschacht is over een lengte van circa zestig meter de slappe grond vervangen door verdicht zand. Aansluitend op dit stuk is de grond over een lengte van zeventig meter versterkt met ‘mixed in place’, een techniek waarbij cement in de grond wordt geïnjecteerd.

Bij de zuidelijke aansluiting van de tunnelbuizen op station Blijdorp bestaan de tunnelwanden over een lengte van ongeveer vijftig meter niet uit betonnen segmenten, maar uit stalen buizen. Voor de overgang van het beton naar het staal, is een kom-nok verbinding toegepast. Voor de aansluiting op de ontvangstschacht bij Rotterdam Centraal is zowel een stalen tunnellining als grondverbetering gebruikt. De grondverbetering is gedaan met jetgrouten.

Boorproces

Het boorproces is in december 2005 gestart nabij het Sint Franciscus Gasthuis, aan de noordzijde van Rotterdam. Vanaf hier is in zuidelijke richting geboord naar station Blijdorp en de ontvangstschacht bij Rotterdam Centraal. Nadat in voorjaar 2007 de eerste tunnelbuis gereed was, is de tunnelboormachine weer teruggebracht naar de startschacht voor het boren van de tweede tunnelbuis. Een jaar later was deze tunnelbuis ook klaar.

Metrostation Rotterdam Centraal

Om metrostation Rotterdam Centraal geschikt te maken voor de aansluiting op RandstadRail is in 2006 begonnen met de bouw van een nieuw station. Het eerste deel was eind september 2009 gereed en vervolgens is het oude, ruim veertig jaar oude station gesloopt om het laatste deel van het nieuwe station te kunnen maken. In augustus 2010 was ook dit deel klaar en sinds dat moment rijden er metro’s tussen het nieuwe metrostation en Den Haag.

Het nieuwe station heeft twee eilandperrons, drie sporen en is rechtstreeks bereikbaar vanuit de stationshal van het treinstation en via ingangen aan het Weena en de Conradstraat. Het is ontworpen door Maarten Struijs van Gemeentewerken Rotterdam en gebouwd door Mobilis|TBI. Het contrast met het oude ondergrondse station is groot. Dit station had één slecht verlicht eilandperron en twee sporen. Het nieuwe station heeft grote perrons, hoge plafonds en veel licht en ruimte.

Bouwmethode

Voor de bouw van het nieuwe metrostation is gekozen voor de wanden-dakmethode. Aan drie zijden zijn diepwanden gemaakt tot een diepte van ruim veertig meter. Op deze diepte ligt de zogeheten Laag van Kedichem, een vrijwel waterdichte kleilaag. Aan de vierde zijde kon geen diepwand worden gemaakt, omdat hier de metrotunnel lag van de lijn naar Rotterdam-Zuid. Bovendien zaten hier grondankers van nabijgelegen gebouwen in de grond. Om de bouwkuip toch te sluiten en vrij te houden van grondwater hebben de experts van Ingenieursbureau Rotterdam aan deze zijde met vloeibare stikstof en pekel een waterdichte ijswand gemaakt. Deze vrieswand van ongeveer 50 meter breed, 40 meter diep en ruim 2,5 meter dik was zodanig vormgegeven dat het metroverkeer er tijdens de bouw door kon rijden. De wand is bijna twee jaar in stand gehouden totdat de de vloer en de wanden van het nieuwe station gereed waren.
(Foto: Via buizen wordt koudemiddel rondgepompt om de grond te bevriezen, via Mobilis)

Fietsenstalling Rotterdam Centraal

Onder het stationsplein is een grote ondergrondse fietsenstalling gebouwd voor meer dan vijfduizend fietsen. Deze stalling heeft een directe verbinding met het ondergrondse metrostation. Gebruikers kunnen hier op de metro stappen of via dit station doorlopen naar trein, bus of tram. Net als het metrostation is de stalling ontworpen door architect Maarten Struijs en gebouwd door Mobilis|TBI. Licht en kleuren zorgen voor een prettige sfeer in de stalling. Het plafond, de kolommen en de wanden zijn wit. De vloer van de hoofdroute is rood, terwijl voor de gangen met de fietsenrekken de kleuren paars, blauw, groen, geel en oranje gebruikt zijn. Dit kleurgebruik maakt het eenvoudiger om je gestalde fiets terug te vinden.

Bouwmethode

Voor de stalling is gebruikgemaakt van de wanden-dakconstructie om overlast op straatniveau zo veel mogelijk te beperken. Aan de noordkant is voor de bouwkuip gebruikgemaakt van de damwanden van het metrostation, en aan de zuidkant van de damwanden van de nieuwe Weenatunnel.

Weenatunnel

Het Weena is een drukke oost-westverbinding voor autoverkeer. Om voor voetgangers een veilige oversteek tussen het stationsplein en het nieuwe Kruisplein te kunnen maken, was het noodzakelijk om al het autoverkeer op het Weena naar ondergronds te brengen. Hiervoor is de oude tweebaanstunnel vervangen door een nieuwe 350 meter lange tunnel met twee tunnelbuizen en totaal vier rijbanen.

De bouw vergde de nodige fasering om ervoor te zorgen dat de trams en het wegverkeer konden blijven rijden tijdens de bouwwerkzaamheden. Als eerste is een overkluizing gemaakt voor de tramsporen over het tunneltracé. Terwijl het verkeer gebruikmaakte van de bestaande tunnel, is aan de zuidzijde hiervan een nieuwe tunnel gebouwd. Toen deze klaar was, is het verkeer hier doorheen geleid en is de bestaande tunnel gesloopt en vervangen door een nieuwe. Vanuit de zuidelijke tunnelbuis loopt er een ondergrondse verbindingsweg naar de Kruispleingarage en de Schouwburgpleingarage.

Kruispleingarage

De Kruispleingarage, de diepste parkeergarage van Nederland, is eind 2013 opgeleverd. Het diepste punt van deze garage ligt op twintig meter beneden NAP. De parkeergarage ligt tegenover Rotterdam Centraal, is 150 meter lang, ruim 30 breed en telt vijf verdiepingen. Er kunnen 760 auto’s in. Het garage is ontworpen door gemeentearchitect Maarten Struijs, die ook de fietsenstalling en het metrostation onder Rotterdam Centraal ontwierp.

In het dak van de Kruispleingarage is een waterberging gebouwd om bij hevige buien water uit de Westersingel tijdelijk op te vangen. Stijgt het water in deze singel meer dan tien centimeter, dan stroomt een deel van het water de berging in. Voor de waterberging is het zogeheten watershellsysteem gebruikt. Dit systeem bestaat uit lichtgewicht koepelvormige elementen waarop een betonvloer wordt gestort. De elementen worden gedragen door kunststof poten die ervoor zorgen dat het gewicht van de vloer en de grond op de waterberging gelijkmatig wordt doorgegeven naar het dak van de parkeergarage.

De Kruispleingarage is bereikbaar vanuit de Weenatunnel. In deze tunnel is een afslag die toegang geeft tot een lange ondergrondse straat met aan het einde een rotonde. Via deze rotonde kunnen auto’s de Kruispleingarage in en ook de verderop gelegen Schouwburgpleingarage. Bovenop de garage ligt het autoluwe Kruisplein. Dit plein is als verbinding tussen binnenstad en station één van de belangrijkste pleinen van de stad.

Loopt de weg naar aantoonbare tunnelveiligheid via standaardisatie van ICT-processen?

De veiligheid van verkeerssystemen is voor een groot deel afhankelijk van ICT. Dat is zeker bij tunnels het geval. Maar wat als ICT-systemen falen? Wat betekent dat voor de veiligheid? Hoe kun je garanderen en aantonen dat falende ICT-systemen de veiligheid van de tunnelgebruiker niet bedreigen? En is een standaard ICT-proces daarbij de gedroomde oplossing?

Jørgen Heinrich (Movares) stelt dat de nieuwe Landelijke Tunnelstandaard (LTS) de eerste voorzichtige stappen zet richting een gestructureerd proces voor het creëren van veilig werkende software. Er worden echter nog geen standaard processen gevraagd voor het maken, verifiëren en in dienst stellen van software voor tunneltechnische installaties. Als het gaat om de inherente veiligheid van bijvoorbeeld een treinbeveiligingssysteem, draait het altijd om het aantonen van het veilig falen van de hardware en de software. Zeker in de huidige wereld waarin steeds meer software wordt gebruikt om beveiligingssystemen te bouwen, is het aantonen van de veilige en correcte werking van de software cruciaal. Vindt dit nu ook z’n weg naar tunnels? Jørgen Heinrich en Auke Sjoukema (ProRail) praten over nut en noodzaak van een standaard ICT-proces.

Is een standaard proces noodzakelijk om de goede werking van ICT-systemen aan te tonen?

Auke Sjoukema: “Bij ProRail zijn we erachter gekomen dat er ten aanzien van standaards en uniformiteit op het gebied van tunneltechnische installaties verbeteringen noodzakelijk zijn. Ten behoeve van adequaat beheer willen we documenten beter op orde hebben en ervoor zorgen dat tunnels op een uniforme manier bediend en beheerd  worden. Op dit moment kijken we vooral naar processen. De aantoonbaarheid van ICT-systemen is daar wel een onderdeel van, maar staat nu niet boven aan de agenda.”

Jørgen Heinrich: “In de LTS en het nieuwe Ontwerpvoorschrift Tunnels van ProRail worden voorzichtige stappen gezet om ook voor tunnels een gestructureerd proces te creëren. Er wordt gevraagd om een proces dat past binnen de IEC-61508 resp. NEN-EN 50126(de internationale functionele-veiligheidsnormen), of een equivalente oplossing. Dit dient te leiden tot een gestructureerde wijze van het maken, verifiëren en in dienst stellen van de tunnelinstallaties door de opdrachtnemer. Maar de eis betekent ook het nodige voor de opdrachtgever. deze zal namelijk veel strenger moeten toezien op het nakomen van de procesafspraken en het geleverd krijgen van de bewijzen voor correcte en veilige werking. Alleen een proceseis stellen is niet voldoende om een cultuur van veiligheid en aantoonbaarheid te verkrijgen.”

Er wordt kennelijk (nog) niet om zo’n standaard gevraagd. Hoe komt dat?

Jørgen Heinrich: “Er wordt niet expliciet om gevraagd, maar een standaard zou wel een logisch gevolg zijn van de vraag naar aantoonbare beschikbaarheid en veiligheid. Het heeft te maken met volwassenheid van de markt. Je ziet dat er steeds meer op basis van systems engineering wordt gewerkt. Daar volgt uit dat je duidelijke afspraken wilt maken.”

Auke Sjoukema: “Standaardiseren past inderdaad bij de wens om steeds meer te certificeren en valideren. Je moet een bepaalde mate van betrouwbaarheid kunnen aantonen. Daarom sluit ik ook niet uit dat een standaard ICT-proces gevraagd zal gaan worden voor tunneltechnische installaties. Wellicht is er nu nog sprake van onderschatting van het afbreukrisico. Voor treinbeveiligingsystemen zien we een heel strikte normering.  De aanpak bij tunneltechnische installaties is gebaseerd op de certificeringseisen vanuit het Bouwbesluit, onder andere voor brandmeldinstallatie, rookwarmteafvoer en  bluswatervoorziening,  en de Europese eisen voor validatie uit de TSI Safety in Railwaytunnels.”

Wat zou de volgende stap moeten zijn om tot een standaard te komen?

Auke Sjoukema: “Het belang van standaardisatie staat zeker al op de agenda. ProRail heeft nu de interne opdracht om een nieuw treinstilstanddetectiesysteem te ontwikkelen voor de Willemsspoortunnel in Rotterdam. We kijken verder dan alleen die tunnel, door een ‘kookboek’ te ontwikkelen met daarin de receptuur die voor alle tunnels toepasbaar is. Zo komen we tot eenduidige afhandeling.”

Jørgen Heinrich: “Het bewustzijn is absoluut aanwezig. Het ‘kookboek’ dat Auke noemt, kan zeker een goede volgende stap zijn. Daarin leg je de functionaliteit vast, zodat je per tunnel een keuze kunt maken. Dan voorkom je de discussie over wel of geen sprinkler en ga je terug naar de functie. Wil je een brand in een bepaalde tijd kunnen bestrijden, of moet de tunnel zodanig zijn gebouwd dat deze bestand is tegen een brand?”

Hoe moet zo’n standaard ICT-proces tot stand komen? Wie bepaalt?

Jørgen Heinrich: “Bij treintunnels is het vanzelfsprekend ProRail die bepaalt. Dat is dan de opdrachtgever.”

Auke Sjoukema: “Maar dan moeten we wel eerst ons huis op orde hebben. Daarna kunnen we aan dit soort optimalisaties gaan denken. En dat gaat misschien wel sneller dan we denken. Spoorzone Delft levert hopelijk een aantal best practices op die we snel kunnen invoeren.”

Tot slot. Komt zo’n standaard ICT-proces er ook echt?

Jørgen Heinrich: “Ja, dat gaat er komen. Het zou voor de branche en de belastingbetaler goed zijn als er voor het hele proces, vanaf het pakket van eisen, via engineering en bouw tot beheer aan toe, een uniforme aanpak komt. Dat levert meer kwaliteit en scheelt veel faalkosten.”

Auke Sjoukema: “Ja, maar ik weet nog niet met welke diepgang. Het ‘kookboek’ van ProRail zal nooit hetzelfde zijn als dat van Rijkswaterstaat. Maar de processen zijn wel gelijk, en daarin kun je van elkaar leren.”

 Reacties uit het netwerk

Daan Dörr, consultant industriële automatisering:

“Movares en Prorail denken in dezelfde richting als de dienst Stadsbeheer van gemeente Den Haag; zij beogen iets soortgelijks met de Haagse Tunnel Standaard (het ICT deel van de LTS voor stadstunnels).

Veilig werkende software vraagt om standaardisatie (hergebruik van al eerder gerealiseerde en bewezen software) én het in veilige toestand komen van de processen bij het falen van een hardware ICT-onderdeel. Dat laatste heeft alles te maken met de autonome bedrijfszekerheid van een onderdeel en de hardware-architectuur waarin deze is geplaatst.

Software zelf kan niet falen, het is immers niet aan slijtage onderhevig. Van belang is dat software goed is ontworpen en getest, zodat de beoogde tunnelveiligheid met behulp van programmatuur wordt bereikt. ‘Standaard’ software (waaronder systeemsoftware) en ‘standaard’ architectuur (waaronder standaardpakketten) zijn dus sleutelwoorden. Fabrikanten leveren verschillende veelvuldig toegepaste ‘standaards’, het is evident dat het gebruik daarvan meer zekerheid geeft over de goede werking.

Waar de LTS besturingsfunctionaliteit (veelal software) beschrijft, sluit deze niet aan op standaards van leveranciers. Technisch is dit geen probleem, met behulp van applicatiesoftware is alles te bouwen. De LTS heeft vooral een stap gemaakt bij de standaardisatie van de technische processen (TTI’s). De automatisering zal echter voor elke tunnel anders uitpakken. Daar valt veel te halen voor wat betreft veiligheid, en dan niet alleen bij de bouw maar ook bij de verwerking van updates van systeemsoftware.

Bij de Haagse Tunnel Standaard (HTS) wordt geprobeerd meer gebruik te maken van de standaard mogelijkheden van besturingsystemen en wordt door opdrachtnemers zelf gemaakte apparatuur (dit zijn feitelijk geen COTS-producten) uitgesloten. Ook zijn de besturingsarchitecturen en details voor de MMI verder gespecificeerd, tevens worden de applicaties die daaruit volgen eigendom van de opdrachtgever. Hergebruik van (bewezen) software bij verschillende tunnels is zo beter te organiseren.”

Interactief met bodeminformatie

Wie de haalbaarheid en opbrengst van een nieuwe aardwarmte-installatie wil weten, moet nu een heel rijtje informatiebronnen raadplegen. In veel gevallen is één blik in de BodemTool straks voldoende. De onlineapplicatie die in opdracht van SKB is gemaakt, combineert bodem- en omgevingsinformatie uit verschillende bronnen, maakt er een 3D-kaart van en laat zien wat de effecten van een maatregel zijn

SKB, voluit Stichting Kennisontwikkeling en Kennisoverdracht Bodem, beschikt over een schat aan informatie over de bodem. Via de website Soilpedia wordt een deel daarvan ontsloten, maar veel diepgaande achtergrondinformatie wordt nooit door de lezers bereikt. Een consortium bestaande uit Ambient/RO2 en StrateGis kreeg daarom de opdracht een slim systeem te ontwikkelen dat bodeminformatie op een geïntegreerde en gebruiksvriendelijke manier toegankelijk maakt. En zo ontstond de BodemTool.

David van den Burg, partner bij Ambient/RO2: “De BodemTool is inmiddels veel méér dan een toegangspoort naar kennis van SKB. Informatie over de ondergrond staat op allerlei verschillende plekken. Het Kadaster beheert bijvoorbeeld gegevens over de bebouwde omgeving, het DINOLoket bevat data over grondlagen, gemeenten hebben informatie over kabels en leidingen, en SKB heeft achtergrondinformatie over WKO-installaties. Dat heeft natuurlijk zijn redenen, maar een eindgebruiker wil deze informatie gebundeld bekijken. De BodemTool biedt deze mogelijkheid.”

Interactief

De gebruiker begint met het kiezen van een gebied. Momenteel zijn er voor Rotterdam Centrum en Leidschendam de meeste data beschikbaar, maar de gebruiker is vrij om zelf een gebied binnen Nederland te selecteren. Vervolgens verschijnen er een 3D-kaart en een toolbox. Met de visualisatiegereedschappen kun je informatie zichtbaar en onzichtbaar maken: wel of geen bebouwing, wel of geen kabels en leidingen, wel of geen bodemverontreiniging, etc. Ook bestemmingsplannen staan erin, evenals drinkwatergebieden, archeologie en ondergrondse bouwwerken.

Screenshot van de BodemTool. (Beeld: Ambient/RO2)

“De BodemTool bevat voor iedere locatie in ieder geval informatie uit het Kadaster, het DINOLoket, de Basisregistratie adressen en gebouwen (BAG) en . De gebruiker krijgt zo inzicht in de stand van zaken, zowel fysiek als beleidsmatig”, vertelt Van den Burg.

Tot zover lijkt de BodemTool op de Atlas Leefomgeving, een website die milieu- en gezondheidsinformatie geïntegreerd aanbiedt. Het grote verschil is de interactiviteit. Waar de gebruiker bij de Atlas alleen informatie kan uitlezen, kan de BodemTool ook reageren op input van de gebruiker. Van den Burg: “Je kunt in de BodemTool maatregelen nemen en kijken wat het effect daarvan is. Wanneer je bijvoorbeeld een waterberging of parkeergarage een gebied in sleept, geeft het systeem aan in hoeverre er conflicten ontstaan en welke impact de maatregel heeft. Er wordt gekeken naar effecten binnen de vijf P’s: people, planet, profit, project en public. Je ziet dus wat de maatregel oplevert qua geld, maar ook wat de consequenties zijn voor de bewoners en het milieu. Uiteindelijk zal dit een belangrijke functionaliteit worden, want als een gemeente bijvoorbeeld een windmolen wil plaatsen, dan kost een haalbaarheidsonderzoek nu veel tijd en geld. Met de BodemTool zou je binnen een dag een vrij goed beeld hebben van geschikte locaties, de knelpunten en de kosten en baten van een dergelijke maatregel. Hiervoor werken we echter nog aan de gebruiksvriendelijkheid.”

“De meeste gebruikers zijn nu goed in staat om met de tool een gebied te onderzoeken. Je merkt daarbij verschil tussen doelgroepen: beleidsmedewerkers ruimtelijke ordening vinden de informatie bijvoorbeeld nuttig en compleet, maar vrij complex, terwijl bodemspecialisten zeggen dat het systeem niet gedetailleerd genoeg is. Naar ons idee hebben we het dus precies goed gedaan,” meent Van den Burg, “maar het kan natuurlijk altijd beter.”

Denkwerk
De BodemTool bestaat grofweg uit twee delen: de interface waarin de gebruiker werkt (de website) en een systeem achter de schermen dat alle gegevens aan elkaar knoopt en er zinnige informatie van maakt. Van den Burg: “Hiervoor worden bestaande modellen gebruikt, waarin we de kennis van SKB hebben verweven. Ook TNO heeft meegewerkt. Zij hebben binnen hun concept Urban Strategy rekenmodellen ontwikkeld om de gevolgen van planologische ingrepen inzichtelijk te maken.”

In het kader rechtsboven is te zien wat de consequenties zijn van het installeren van een hoge temperatuuropslag op deze locatie. (Beeld: Ambient/RO2)

“In Dordrecht is de tool toegepast in een praktijkproject. De gemeente is daar op zoek naar een optimaal tracé voor een mogelijke spoortunnel. Met behulp van de BodemTool kon de gemeente snel zien wat er op verschillende locaties mogelijk is en welke effecten ondergronds bouwen daar zou hebben. Het tracé dat je zo bepaalt, moet je natuurlijk nog nader onderzoeken, maar je hebt vast een goede indicatie”, aldus Van den Burg.

Wenkend perspectief

Omdat de tool nog in ontwikkeling is, zijn SKB en de makers tot nu toe terughoudend geweest met promotie. Er worden kleine bijeenkomsten georganiseerd voor de beoogde gebruikers om te vertellen wat er allemaal mee kan. “Ook vragen we waar nog behoefte aan is, zodat we daar in volgende versies op in kunnen spelen”, zegt Van den Burg. Ondertussen kan iedereen de BodemTool bekijken en gebruiken via www.bodemtool.nl.

Van den Burg ziet de applicatie nu vooral als een ‘wenkend perspectief’: “De basis van het systeem is er: de data zitten erin, er is een methodiek om meer data toe te voegen en er zijn modellen die gegevens aan elkaar koppelen en als informatie ontsluiten. We zijn in principe in staat om binnen een halve dag de relevante data van een nieuwe bronhouder (zoals gemeente, waterschap, provincie) in te lezen en correct te integreren. Ook kun je al spelen met maatregelen. De tool is daardoor al heel bruikbaar in een verkennende fase van een project; het maakt de communicatie gemakkelijker. Maar uiteindelijk zou de tool gebruikt kunnen worden bij het opstellen van (ondergrondse) structuurvisies of het (her)inrichten van een gebied. Dat zie ik over een aantal jaar gebeuren.”

Datagedreven onderhoud voor rijkswegtunnels in Nederland

De wereld om ons in heen verandert in rap tempo, alle digitale ontwikkelingen veranderen de mogelijkheden die we hebben. Daarbij stijgt het aantal verkeersbewegingen en wordt een steeds hogere beschikbaarheid verwacht van de (ondergrondse) infrastructuur. Met de opkomende renovatie-opgave ligt er een unieke kans om verbeteringen of innovaties op het gebied van onderhoud te introduceren.

De dagelijkse praktijk leert dat beschikbare databronnen niet of onvoldoende worden benut voor onderhoud en dat aanvullende datavraagstukken nauwelijks worden meegenomen in renovatie- of nieuwbouwprojecten. Deze uitdagingen worden onder meer onderschreven door het Institute of Asset Management [1] en het tunnelprogramma van het COB [2].

Johan Bel heeft voor zijn afstuderen aan de Hogeschool Utrecht onderzocht in hoeverre data vanuit de tunnelbesturing kan bijdragen aan het onderhoudsproces. Het onderzoek is opgesplitst in vier fases. Allereerst is het huidige onderhoudsproces en het verbeterpotentieel onderzocht, vervolgens is gekeken naar het toekomstperspectief van onderhoud, waarbij gebruikgemaakt is van kennis uit andere sectoren. Hierna is een analyse gemaakt van de reeds aanwezige data en de manier waarop deze in het onderhoudsproces kan bijdragen aan zowel de verbeterpunten in de huidige situatie als aan het realiseren van het toekomstperspectief. Om verandering naar een meer datagedreven onderhoudsproces in gang te zetten, zijn tot slot de ‘drivers en barriers’ in kaart gebracht. De uitkomst van het onderzoek is vervolgens samengevat in een groeimodel voor datagedreven onderhoud.

Huidige onderhoudsproces

Met een proces-FMEA (failure modes and effects analysis) is gekeken naar de faalmechanismes in het huidige onderhoudsproces. Uit de analyse blijkt dat door het toevoegen van (realtime) data vanuit de tunnelbesturing de volgende verbeterpunten kunnen worden gerealiseerd:

  • Verhogen van kwaliteit en betrouwbaardere uitkomst RAMS-rapporten/
  • Verschuiving van key performance indicators van lagging naar leading.
  • Sluiten van PDCA-loop en het continu verbeteren van de onderhoudsbehoefte(s).

Door deze punten te verbeteren, verandert het traditionele onderhoudsproces naar een meer datagedreven manier van werken. En worden beslissingen genomen op basis van (realtime) data uit het veld, wat ook wel wordt beschreven als conditiegestuurd onderhoud op basis van procesparameters [3].

Toekomstperspectief

Bij het analyseren van het toekomstperspectief van het onderhoudsproces is gebruikgemaakt van experts uit de tunnelsector. Uit de studie volgden drie conclusies:

  • Programmeren van onderhoud zal gebeuren op basis van feiten en data.
  • Assets en/of systemen zullen de onderhoudsbehoefte aangeven.
  • Onderhoud zal uitgevoerd worden op basis van voorspellende technologie.

Daarnaast zijn sectoren onderzocht die een stap verder zijn met het toepassen van data in het onderhoudsproces. Hiervoor is gebruikgemaakt van onder andere de kennis van ProRail, het Rijkswaterstaat DataLab (sluizen/asfalt) en nutsbedrijven.

Om het toekomstperspectief te verwezenlijken, zal data uit het veld moeten worden verrijkt met contextdata. Hierbij moet gedacht worden aan gegevens over het weer, operationele data en vervoersstromen. De onderliggende technieken hiervoor zijn machine learning en pattern recognition [4]. Aangezien deze technieken nog in de kinderschoenen staan voor onderhoudsprocessen en de predictors (voorspellende factoren) onbekend zijn, zal aanvullend onderzoek nodig zijn.

Analyse

In de analysefase is de data vanuit tunnelbesturing, zoals voorgeschreven in de Landelijke Tunnelstandaard (LTS) [5][6], gekoppeld aan het onderhoudsproces. Hierbij is gebruikgemaakt van FMECA’s (failure mode, effect and criticality analysis) waarmee de onderhoudsbehoefte per deelinstallatie is bepaald. Hieruit zijn onderhoudstaken geformuleerd en is de databehoefte per onderhoudstaak vastgesteld.

Aan de hand van de LTS is onderzocht of deze data voorgeschreven en dus beschikbaar is. Daarbij is ook bekeken of er aanvullende data beschikbaar is, afkomstig van bijvoorbeeld ‘slimme’ assets en expertsystemen. Uit de analyse kan worden geconcludeerd dat door toevoeging van data zoals voorgeschreven door de LTS het onderhoudsproces verandert van een reactief naar een realtime proces; door toevoeging van data uit ‘slimme’ assets en expertsystemen gaat het naar een ‘leading’ proces. Het toevoegen van data aan het onderhoudsproces draagt direct bij aan de verbeterpunten zoals geformuleerd in de huidige situatie.

Drivers en barriers

In de laatste fase van het onderzoek zijn de drivers en barriers onderzocht voor datagedreven onderhoud; stimulansen en obstakels. Hierbij is gebruikgemaakt van een tweetal brainstormsessies. De grootste drivers voor het implementeren van datagedreven onderhoud zijn:

  • Assets genereren steeds meer data.
  • Kosten voor data verzamelen, verwerken en opslaan nemen snel af.
  • Openheid en transparantie naar opdrachtgever en gebruikers.
  • In-control raken, leidend in plaats van reactief onderhoudsproces.
  • Kostenreductie, LCC, operationele kosten, etc.

De grootste barriers voor het implementeren van datagedreven onderhoud zijn:

  • Sector/organisatiecultuur is niet ‘data-minded’.
  • Huidige kwaliteit van data is onvoldoende.
  • Ophalen van data uit systemen is niet mogelijk (bijv. cybersecurity).
  • Bijscholing van maintenance-engineers (investeringskosten).

Conclusie

Door het verbeteren van het huidige onderhoudsproces middels het gebruik van data wordt een bijdrage geleverd aan het verbeteren van RAMS-rapporten/onderhoudsplannen, kan de PDCA-loop worden gesloten, kan er op het continu verbeteren van onderhoudsbehoefte(s) worden ingezet en verschuift het proces van reactief naar leidend.

Of data van tunnelbesturing kan bijdragen aan het toekomstperspectief is niet met zekerheid te zeggen. Machine learning en pattern recognition staan in zijn kinderschoenen voor onderhoudsprocessen. Wel kan een basis worden gelegd door het vergaren van data uit tunnelbesturing en het toevoegen van contextdata.

‘Beter in staat te sturen op de prestaties van de infrasystemen’

“Vanuit Proficium zien we al jaren een toenemende behoefte aan het beter sturen van onze assetmanagementactiviteiten op basis van beschikbare data, mede vanwege de (hoge) risico’s die er kleven aan het niet-beschikbaar zijn van assets in een prestatiecontract/DBFM-contract. We zien dat veel systemen in staat zijn data te leveren, maar binnen de inframarkt passen we deze data onvoldoende toe om data te aggregeren naar bruikbare informatie waarmee we onze assetmanagementprocessen efficiënter kunnen (in)richten.

Het was voor ons als bedrijf dan ook niet zo moeilijk om voor Johan een thesisonderzoek rondom dit onderwerp te formuleren. De doelstelling van het onderzoek was het inzichtelijk maken van de mogelijkheden om data te gaan inzetten om (realtime) te kunnen sturen op de prestaties van de infrasystemen van onze klanten. Binnen Proficium hebben we daarom een ontwikkelteam samengesteld om parallel aan het thesisonderzoek een tool te ontwikkelen die invulling geeft aan deze behoeften. Naast assetmanagementspecialisten, maintenance-engineers en RAMS-engineers van Proficium hebben we ook de samenwerking gezocht met een software-ontwikkelbedrijf en een klant van Proficium (IXAS). Op basis van o.a. de resultaten uit het thesisonderzoek van Johan hebben we inmiddels een succesvol pilottraject afgerond waarmee we met de ontwikkelde tool inzicht geven in het presteren van de beschikbaarheid en veiligheid van de Gaasperdammertunnel.

De tool stelt ons in staat om (potentieel) falen op de beschikbaarheid en veiligheid (gerelateerd aan de eisen uit het contract) te voorkomen door het tijdig plannen van herstelmaatregelen en het beperken van de hersteltermijn. Hiermee reduceren we bovendien risico’s. Kortom, we zijn beter in staat om te sturen op het optimum tussen prestaties, risico’s en kosten, doordat we beter en eerder inzage hebben in de werkelijke toestand van de assets. Hiermee kunnen we een grote bijdrage leveren aan doelstellingen van onze klanten. Zonder het thesisonderzoek van Johan was het ons niet op deze manier gelukt om dit nieuwe product te ontwikkelen.

Namens Proficium wil ik dan ook Johan hartelijk danken voor het behalen van dit fantastische resultaat. Het eindcijfer 8,5 is het onderzoek meer dan waard!”

Bram ten Klei en Pavel Roudman
Afstudeerbegeleiders vanuit Proficium

3D-scan brengt vervormingen snel in beeld

Rijkswaterstaat voert regelmatig inspecties en deformatiemetingen uit om de onderhoudstoestand en vervormingen van afgezonken tunnels te volgen en tijdig te kunnen ingrijpen bij potentiële gebreken. Samen met adviesbureau Arcadis is onderzocht of deze monitoring verder kan worden verbeterd. Daartoe is onder andere als pilot een 3D-scan gemaakt van de Kiltunnel.

“De meeste Nederlandse zinktunnels zijn op staal gefundeerd”, vertelt Harry Dekker, coördinerend adviseur Tunnels bij Rijkswaterstaat. “Concreet betekent dit dat de verschillende elementen waaruit deze tunnels zijn opgebouwd, op een relatief losgepakte zandlaag liggen. Daardoor zijn afgezonken tunnels gevoelig voor zettingen. Als deze zettingen groot en ongelijkmatig zijn, ontstaan er spanningen in de tunnelconstructie die tot scheurvorming en lekkage kunnen leiden. Daarom ligt de nadruk bij onze inspecties op het meten van vervormingen.”

“Onlangs heeft Arcadis een analyse gemaakt van de meetsystemen voor het monitoren van de deformaties van afgezonken tunnels. Daaruit bleek dat we in diverse afgezonken tunnels wel periodiek de verplaatsingen van de zinkvoegen meten, maar niet van de tussenliggende mootvoegen (zie kader). Tegelijkertijd blijkt bij tunnels waar de mootvoegen wel worden ingemeten, dat de grootste deformaties vaak juist dáár optreden. Op basis van deze analyse hebben we het advies gekregen om in meerdere tunnels de mootvoegen van meetbouten te voorzien, zodat we voortaan ook deformaties op die plekken kunnen meten. Dat advies volgen we zeker op, maar we weten dan nog niet hoe groot de vervormingen van de mootvoegen zijn sinds het gereedkomen van een tunnel. Inzicht in deze absolute deformaties maakt het mogelijk om per mootvoeg een inschatting te geven van de kans op lekkage of andere mogelijke schades of risico’s.

Nulsituatie

Dekker vervolgt: “Voor de absolute deformaties zouden we van iedere tunnel de nulsituatie moeten kennen. Dat is helaas niet zo. Van de meeste tunnels zijn de zettingsmetingen pas een jaar na oplevering gestart – waarbij de mootvoegen zelden zijn meegenomen – terwijl je ervan uit kunt gaan dat in de eerste maanden na het afzinken, onderspoelen en aanvullen van de zinksleuf al forse zettingen optreden.”

“Om te onderzoeken of we de vervorming van de mootvoegen toch kunnen kwantificeren, ook als er in het verleden geen metingen ter plaatse zijn uitgevoerd, hebben we met Arcadis een pilot gedaan met een 3D-scan. De pilot hebben we uitgevoerd bij de Kiltunnel, omdat dit een van de weinige afgezonken tunnels is waar een goede nulmeting is gedaan en vervolgens ook regelmatig zettingsmetingen zijn gedaan bij de mootvoegen. Dat biedt de mogelijkheid om de uitkomsten van de pilot te vergelijken met de werkelijk opgetreden zettingen.”

Nauwkeurig ingemeten

“Voor de proef hebben we de huidige geometrie van de tunnel met een 3D-scan nauwkeurig ingemeten”, legt senior-projectleider Joost Visschedijk van Arcadis uit. “Ook hebben we op basis van de ontwerptekeningen een 3D-model van de tunnel gemaakt om na te gaan of ontwerptekeningen te gebruiken zijn om de zogeheten ‘as built’ situatie vast te stellen. Daarvoor hebben we de actuele metingen vergeleken met het model. Daaruit bleek snel dat de tunnel niet op de hoogte is gebouwd die op de tekeningen is aangegeven. Zo lag het model op sommige plekken lager dan de gescande hoogte. Dat zou betekenen dat de tunnel is in de loop van de tijd is gestegen, terwijl we uit de zettingsmetingen weten dat de constructie op een aantal plekken fors is verzakt.”

Als volgende stap heeft Arcadis gekeken of je de relatieve vervormingen van mootvoegen kunt bepalen als je alleen de opgetreden zettingen van de zinkvoegen kent. Daarvoor hebben de onderzoekers gewerkt met een referentievlak. Dit vlak ligt met de hoekpunten boven de meetbouten in de zinkvoegen, waarbij de hoogte van elk hoekpunt afhangt van de gemeten zetting. Hierdoor kan het referentievlak exact op de hoogte worden gebracht van de meetbouten direct na de bouw. Visschedijk: “Om de vervormingen over de hele lengte van de constructie vast te stellen, hebben we de verschillen tussen het referentievlak en de scan bepaald. Deze verschillen laten zien hoe de constructie over de gehele lengte is vervormd. De vervormingen van de mootvoegen ten opzichte van het referentievlak die met de scan zijn bepaald, komen goed overeen met de eerder gemeten deformaties.”

Waardevol

“Natuurlijk vermoedden we al dat je de nulsituatie achteraf niet betrouwbaar kunt reconstrueren”, stelt Dekker. “Dat betekent dat je de absolute zettingen van de mootvoegen niet kunt achterhalen. We weten nu echter wel dat je de relatieve vervormingen van de mootvoegen met een 3D-scan snel en goed kunt bepalen. Die uitkomst betekent niet dat we binnenkort alle oude zinktunnels gaan inscannen. Hebben we echter het idee dat een mootvoeg beschadigd is, met lekkage als gevolg, dan kunnen we een 3D-scan laten maken om de relatieve vervormingen goed in beeld te brengen.”

“Vervormingen van mootvoegen zijn een serieus probleem: we denken dat lekkages bij afgezonken tunnels vrijwel altijd het gevolg zijn van een beschadiging van een mootvoeg. Daarom hebben we dit probleem ook door TU Delft en TNO laten onderzoeken. Uit numerieke berekeningen blijkt dat de kraagconstructie inderdaad zodanig kan beschadigen dat er een scheur ontstaat die tot lekkage leidt.”

“Dat de meeste tunnels een beetje lekken is al lang bekend en in de praktijk goed te beheersen, maar we willen wel graag weten of lekken op termijn steeds groter worden. En als dat zo is, hoe we ze dan afdoende kunnen repareren. Een aantal zinktunnels is inmiddels bijna vijftig jaar oud en het is de bedoeling dat ze na een grondige renovatie minimaal nog eens vijftig jaar meegaan.”

A2 Maastricht

In de nacht van 15 op 16 december 2016 is de nieuwe tunnel in de A2 bij Maastricht in gebruik genomen; de eerste dubbellaagse tunnel in Nederland. In 2011 begon het consortium Avenue2 met de bouw van de vier tunnelbuizen. De onderste twee zijn bestemd voor het doorgaande verkeer en de bovenste twee voor het regionale en lokale verkeer. Bovenop de tunnel komt een langgerekt park met voet- en fietspaden en tweeduizend lindebomen.

Bovenop de tunnel komt de Groene Loper, een lintvormig park voor fietsers en voetgangers. Door zijn groene en recreatieve karakter verbindt de Groene Loper de wijken aan weerskanten van de A2 weer met elkaar. Langs het park komen (deels) nieuwe woningen, die passen in het Maastrichtse straatbeeld. In het park komen tweeduizend lindebomen die geschikt zijn om te groeien in de relatief dunne grondlaag bovenop het tunneldak. (Foto: Avenue2)

Een belangrijk voordeel van gescheiden tunnelbuizen is dat onderhoud en beheer eenvoudiger zijn uit te voeren. Zo kan het verkeer tijdelijk worden verplaatst naar de andere tunnelbuizen als in een tunnelbuis werkzaamheden nodig zijn. Daarnaast zorgt het stapelen van rijbanen ervoor dat de tunnel smaller wordt.

Totaalplan

Sinds de jaren zestig van de vorige eeuw moet al het doorgaande wegverkeer door Maastricht gebruik maken van de N2. Deze weg met twee keer twee rijstroken, gelijkvloerse kruisingen met stoplichten en een maximum snelheid van vijftig kilometer per uur, zorgt voor talrijke problemen. Zo vormt de weg een barrière tussen het oostelijke en westelijke deel van Maastricht en veroorzaakt het vele verkeer geluid- en stankoverlast. Verder staan er op de weg en de aansluitende snelweg A2 veel files en is geregeld sprake van onveilige verkeerssituaties.

Reeds in de jaren tachtig werd nagedacht hoe deze problemen konden worden opgelost. In 2003 zijn Rijkswaterstaat, de provincie Limburg en de gemeenten Maastricht en Meerssen gestart met een totaalplan voor verkeersinfrastructuur, stadsontwikkeling en natuur en milieu. Uiteindelijk heeft dit geleid tot het project ‘De Groene Loper’. Naast de bouw van de tunnel omvat het onder meer de aanleg van een park bovenop de tunnel – dat een groene verbinding vormt met de landgoederen net ten noorden van de stad – de ontwikkeling van nieuwe stadsentrees bij de tunnelmonden, en vernieuwing en verdere ontwikkeling van het stadsdeel Maastricht-Oost.

Om de planontwikkeling en inspraakprocedures zo snel mogelijk te laten verlopen hebben de vier opdrachtgevende partijen – Rijkswaterstaat, provincie Limburg en de gemeenten Maastricht en Meerssen – gekozen voor een gecombineerde aanpak van de Tracé- en MER-procedure, de wijzigingen van de bestemmingsplannen en de aanbesteding. Voor de aanbesteding is een prijsvraag uitgeschreven. Vijf consortia hebben hieraan meegedaan. Uiteindelijk heeft het consortium Avenue2, dat bestaat uit de bouwbedrijven Ballast Nedam en Strukton, de aanbesteding gewonnen.

Tijdens de Dag van de Bouw 2013 kon het publiek een bezoek brengen aan de tunnel in aanbouw. (Foto: Flickr/Jeroen van Lieshout)

Stapsgewijze aanleg

De nieuwe, gestapelde tunnel is aangelegd in een bouwkuip. Om ruimte voor deze bouwkuip te creëren, is de bestaande weg in westelijke richting verplaatst. De werkzaamheden voor de bouwkuip zijn in 2012 gestart bij de tunnelmonden bij het Europaplein aan de zuidkant en verkeersknooppunt Geusselt aan de noordkant. Daarna werkten twee zogeheten ‘tunnelbouwtreinen’ vanaf deze tunnelmonden naar elkaar toe.

De bouwkuip werd in stappen aangelegd. Hiertoe is het tunneltracé verdeeld in ruim honderd ‘moten’ van elk ongeveer 24 meter lang. Bij de aanleg van de bouwkuipwanden bracht de aannemerscombinatie tussen de verschillende moten damwanden aan, zodat de bouwkuip per ‘compartiment’ kon worden ontgraven. Na de (gedeeltelijke) ontgraving werden stempels of groutankers aangebracht om ervoor te zorgen dat de wanden van de bouwkuip niet naar binnen werden gedrukt.

Voor het maken van de wanden van de bouwkuip paste Avenue2 drie verschillende technieken toe. Bij de tunnelmonden bij Geusselt en het Europaplein zijn damwandplanken in de grond getrild. Binnen de bebouwde kom, tussen de John F. Kennedysingel en de Terblijterweg – waar intrillen geen optie is vanwege de te grote trillingshinder voor de nabije bebouwing – werden cement-bentonietwanden gemaakt waarin de aannemer vervolgens stalen damwandplanken liet zakken.

De tunnel op 29 maart 2014. Stempels houden de bouwkuipwanden op hun plaats. (Foto: Flickr/Etienne Muis)

Tussen de ANWB- en de Gemeenteflat is gekozen voor betonnen diepwanden omdat hier moest worden gewerkt met een zogeheten wanden-dakconstructie. Op dit deel van het tunneltracé ontbrak de ruimte om naast de bestaande weg een bouwkuip te maken. Daarom is de wanden-dakconstructie in twee fasen aangelegd. Eerst is het deel aan de kant van de ANWB-flat gemaakt. Vervolgens is over dit deel de N2 gelegd, waarna het het deel aan de kant van de Gemeenteflat is gebouwd.

Om de bouwkuip droog te houden, paste Avenue2 bemaling toe. Door het wegpompen van water uit de bouwkuip daalt de grondwaterstand ook in de directe omgeving, wat ongewenst is. Om deze verlaging van het grondwaterpeil zo veel mogelijk te beperken en de natuurlijke grondwaterstroming zo min mogelijk te verstoren, werkte de aannemerscombinatie met een retourbemaling: het water uit de bouwkuip werd via leidingen naar zogenoemde retourvelden naast de bouwkuip gepompt zodat het weer kan infiltreren.

Ingebruikname

Het in gebruik nemen van de vier tunnelbuizen was een flinke technische operatie. Op 15 december 2016 werd na de avondspits begonnen met het instellen van een verkeersomleiding, zodat de wegenbouwers de wegmarkeringen konden aanpassen, de nieuwe verkeers- en matrixborden konden instellen en andere laatste werkzaamheden konden uitvoeren. Om 23.10 uur kon de eerste bus met hoogwaardigheidsbekleders en gasten de tunnel in rijden en zo de eerste tunnelbuis in gebruik nemen. Het reguliere verkeer volgde om 23.40 uur. Daarna werden een voor een de andere buizen geopend. De vierde en laatste buis is om 8.00 uur in de ochtend in gebruik genomen.
>> Lees meer op de website van A2 Maastricht

'Kan de onderdoorgang niet gewoon daar?'

Men neme een Bouw Informatiemodel (BIM), drie grote smartboards en een zaal vol stakeholders en je doet aan Virtual Design and Construction. Zo eenvoudig lijkt het op het eerste gezicht, maar niets is minder waar. De VDC-methode van Royal HaskoningDHV is een omslag in denken; een andere aanpak die lef vergt.

Volgens Royal HaskoningDHV zorgt Virtual Design and Construction (VDC) voor een breed gedragen ontwerp, minder faalkosten en een snellere doorlooptijd. “Je krijgt meer voor minder”, stelt Jeffrey Rampaart, projectmanager bij het adviesbureau.

“Bij een bouwproject heb je te maken met een keten van partijen. Iedereen streeft ernaar om een efficiënt ontwerp te creëren, waarmee het project binnen het budget, binnen de gestelde tijd en naar ieders tevredenheid kan worden gerealiseerd. Maar de schakels in de keten werken vaak relatief solitair en dat kan een efficiënt ontwerp in de weg staan. Elke partij heeft zijn eigen beleving en verwachtingen bij het project: hoe zorg je dat deze bij elkaar komen? Hoe zorg je ervoor dat iedereen die een belang heeft bij het project, meewerkt aan de oplossing? Wij denken dat je dit bereikt met een visuele methode zoals VDC.”

In beeld

VDC is ontwikkeld door Stanford University en door Royal HaskoningDHV geadopteerd en verder ontwikkeld. De methode is het best uit te leggen aan de hand van de iRoom, een ruim opgezette kamer met drie smartboards aan de muur. Hierop is tijdens een VDC-sessie voor een bouwproject een 3D-weergave van het ontwerp te zien (een BIM), evenals andere relevante informatie, zoals het Programma van Eisen of een luchtfoto van het plangebied. De deelnemers – vertegenwoordigers van alle stakeholders in het project – gebruiken de borden om ontwerpoplossingen te onderzoeken. Hoe scherp mag de bocht maximaal zijn, kunnen we nog een middenberm toevoegen, hoe ervaart een fietser de onderdoorgang? Op zulke vragen wordt ter plekke een antwoord gezocht.

De iRoom in het kantoor van Royal HaskoningDHV in Amersfoort. (Foto: RHDHV)

Het visualiseren van het ontwerp is dan ook een belangrijk aspect van VDC. Het is echter niet het enige. Ook de organisatie en het proces spelen een rol. Bij het selecteren van de deelnemers voor een VDC-sessie moet bijvoorbeeld over de organisatie worden nagedacht: je hebt alle stakeholders nodig om tot een echt integraal ontwerp te komen. Rampaart: “Met VDC werk je geïntegreerd op drie niveaus: een parallel proces vervangt het traditionele volgtijdelijke proces, je betrekt technische en niet-technische stakeholders en op productniveau integreer je zaken zoals ramingen, PvE, risicodossier, enzovoort.”

Simultaan, snel en samen

“VDC is dus meer dan het samen kijken naar een BIM. Sterker nog, het kan ook zonder BIM. Gezamenlijk nadenken over het ontwerp kan ook met flip-overs en post-its. Maar om alle stakeholders bij het proces te betrekken, moet je het ontwerp goed in beeld brengen en dat is bij de complexe projecten van tegenwoordig vrijwel onmogelijk zonder digitale hulpmiddelen”, meent Rampaart.

“De schermen zorgen er daarnaast voor dat je verschillende informatiebronnen kunt combineren. Je kunt bijvoorbeeld de uitgangspunten van het ontwerp letterlijk naast de visualisatie houden, of de huidige en geplande situatie met elkaar vergelijken. Door de visuele benadering kan bovendien iedereen meepraten, de barrière tussen technisch specialisten en beleidsmakers en bestuurders wordt veel kleiner. De klant voelt zich hierdoor meer gehoord. En misschien nog wel belangrijker: je kunt direct laten zien wat een wijziging in het ontwerp voor effect heeft, waardoor sneller keuzes gemaakt kunnen worden. Wat gebeurt er als je de onderdoorgang wat meer naar links plaatst? Is er dan nog voldoende ruimte voor een fietspad? Voor zulke wijzigingen hoef je nu niet terug naar de tekentafel. Je voert het ter plekke uit, waarna je ook gelijk het resultaat kunt bespreken. Dat werkt enorm efficiënt.”

Ideaal dus, dat VDC. Waarom zijn we nog niet massaal overgestapt? Rampaart: “Met VDC wordt het ontwerpproces een open proces, iedereen heeft inspraak. Dat schrikt sommige mensen af. De civiele bouwwereld is een conservatieve wereld, omdat de risico’s vaak groot zijn. Een radicaal andere aanpak wordt hierdoor niet direct omarmd. Je moet met een heel andere blik naar je eigen processen kijken. Daar is lef en vertrouwen voor nodig.”

Echte data

Royal HaskoningDHV gebruikt VDC nu twee jaar, en met succes. Rampaart denkt dat het bij projecten gemiddeld een kostenbesparing van tien tot dertig procent oplevert. “Daarnaast krijgt de klant een betere oplossing, omdat je de vraag nog eens tegen het licht houdt.” VDC leidde onder meer bij een alternatievenstudie voor spoorkruisingen in Ermelo tot tevredenheid van de klant. “We hebben daar de bestaande omgeving gedigitaliseerd en vervolgens de nieuwe plannen erin verwerkt”, vertelt Rampaart. “Zo ontstond er een heel nauwkeurig beeld van de toekomstige situatie. De gemeente kan het plan hiermee goed uitleggen aan het college, de gemeenteraad en inwoners.”

Het verschil met ‘gewone’ visualisaties is dat het 3D-model bij VDC gebaseerd is op de data van zowel de omgeving als het ontwerp. Ook de ondergrond wordt meegenomen. Bodem- en hydrologisch onderzoek, het DINOLoket, de GBKN en het Kadaster leveren veel van de benodigde gegevens. Maar zoals menig ondergrondse bouwer weet, blijft er altijd onzekerheid bestaan, bijvoorbeeld over de lokale bodemgesteldheid en de ligging van kabels en leidingen. Rampaart beaamt dat. “Informatie over ondergrondse infrastructuur wil inderdaad nog wel eens afwijken van de werkelijkheid. Bij VDC levert dat echter minder grote hindernissen op, omdat afwijkingen in de data veelal te klein zijn om het proces te verstoren. Bovendien zijn eventuele consequenties snel in beeld te brengen en aan te passen.”

Tijdens de VDC-sessie onderzoeken stakeholders mogelijke ontwerpoplossingen. (Foto’s: RHDHV)

Beleving

“De kracht van VDC is dat het ontwerp gaat leven. Techniek wordt beleving. Natuurlijk kunnen we de wethouder van Amersfoort vertellen wat je als automobilist ziet als je de tunnel inrijdt. Of een plaatje daarvan laten maken en hem dat laten zien. Maar als de wethouder die vraag stelt in een VDC-sessie, kun je ter plekke inzoomen op de inrit, de camera draaien en de situatie in beeld brengen. Tijdens een VDC-sessie voor een nieuwe onderdoorgang in Ermelo opperde iemand halverwege: ‘Kan de onderdoorgang niet gewoon in het midden?’. Toen hebben we het object domweg opgepakt en langs het spoor gesleept om te kijken waar hij paste. Zo kom je er ook achter wat níet kan en dat is evengoed nuttig om te weten.”

SOS: Meer meten met infrarood

Hoe kan data helpen tunnels veiliger te maken? Bieden nieuwe technieken of inzichten kansen om de veiligheid te verhogen of de veiligheid op niveau te houden met hogere beschikbaarheid of tegen lagere kosten? Ontwikkelingen op ICT-gebied gaan snel. Meer rekenkracht en daaruit volgende snellere verwerking van data, maken het zinvol bestaande oplossingen tegen het licht te houden. In de Westerscheldetunnel is een proef gedaan met infraroodsensoren als basis voor het snelheidsonderschrijdingssysteem (SOS). Daaruit blijkt dat de beperkingen van bestaande systemen met detectielussen, kunnen worden weggenomen.

Het bedrijf Soltegro heeft op eigen initiatief een SOS ontwikkeld en vervolgens de N.V. Westerscheldetunnel bereid gevonden mee te werken aan een proefopstelling. “Ontwikkeling in eigen beheer is wellicht ongebruikelijk”, zegt commercieel directeur Jan-Martijn Teeuw van Soltegro, “maar past wel bij onze werkwijze. Wij positioneren ons tussen ingenieursbureaus en automatiseringbedrijven in. Bij ons werken veel ICT-specialisten, maar ook elektrotechnisch en werktuigkundig ingenieurs. Met die disciplines werken we op een integrale manier aan projecten. En dat brengt met zich mee dat wij ook anders tegen problemen aankijken.”

Manager systems engineering en innovatie Franc Fouchier legt uit wat dat in de praktijk inhoudt: “De ervaring die wij hebben opgedaan in de softwarewereld projecteren we op de civieltechnische wereld. Dat betekent dat je eerst een probleem goed analyseert zonder daarbij al oplossingsrichtingen in het achterhoofd te hebben en pas in tweede instantie kijkt naar de combinatie van technieken die je kunt inzetten om dat probleem op te lossen. In de praktijk is deze aanpak vaak niet mogelijk, omdat bepaalde oplossingen zijn voorgeschreven. Zo staat in de tunnelstandaard dat je voor snelheidsmeting inductielussen moet toepassen. In onze optiek heb je voor een optimale oplossing keuzevrijheid nodig. Daarom konden we het SOS dat we in de Westerscheldetunnel hebben getest ook alleen maar in eigen beheer ontwikkelen.”

“In onze optiek heb je voor een optimale oplossing keuzevrijheid nodig.”

Elk voertuig meten

Met een SOS kan worden gedetecteerd of de snelheid van voertuigen op een willekeurig punt te laag wordt en er daardoor gevaarlijke situaties ontstaan die bijvoorbeeld kunnen leiden tot kop-staartbotsingen. Het gebruik van inductielussen om snelheidsverschillen te detecteren kent een aantal beperkingen. Er wordt alleen gemeten op de plaats van de lus, en defecten aan een inductielus leiden bij vervanging vrijwel altijd tot verminderde beschikbaarheid van de tunnel. Jan-Martijn Teeuw: “Met onze sensoren zijn we in staat elk voertuig in de tunnel uniek te detecteren. Je volgt het bewegende object en dat biedt meer mogelijkheden. Je verzamelt meer informatie. Met behulp van software kun je detecteren of voertuigen afwijkend gedrag vertonen. Het gaat dus verder dan alleen detecteren of een willekeurig voertuig op een bepaalde plaats onder een minimumsnelheid komt. Bovendien kun je door bijvoorbeeld een kapotte sensor een meting missen en nog steeds een betrouwbaar resultaat hebben.”

In de Westerscheldetunnel is het systeem van Soltegro op een deel van het traject geïnstalleerd, naast het bestaande systeem. De wegverkeersleiders hebben beide systemen gemonitord en Soltegro feedback gegeven. In een halfjaar tijd zijn enorm veel meetgegevens verzameld. Daaruit blijkt dat de betrouwbaarheid van het systeem bijzonder hoog is. De mensen van de Westerscheldetunnel hebben beaamd dat het goed heeft gefunctioneerd. “De betrouwbaarheid is cruciaal”, vindt Jan-Martijn Teeuw. “Als systemen te vaak valse meldingen geven, is het gevolg dat wegverkeersleiders het niet meer serieus nemen en ook niet reageren als er wel iets aan de hand is. Dan neemt de veiligheid per definitie af.”

Tijd in plaats van afstand

Implementatie van een SOS met infraroodsensoren vindt, net als bij gebruik van detectielussen, plaats op basis van een risicoanalyse. Bij een steile uitrit, zoals bij de Westerscheldetunnel, mag je verwachten dat de snelheid van vrachtwagens sneller terugloopt. In zo’n situatie zal bij beide systemen sprake zijn van meer meetpunten dan in een vlak deel van de tunnel. Het verschil zit in de meeteenheid. Bij gebruik van detectielussen is er per definitie sprake van afstand. Met de sensoren wordt gemeten in tijd, en is het ook mogelijk om meer dan alleen snelheidsverschillen te detecteren.

Franc Fouchier: “Met infrarood detecteren we bijvoorbeeld ook of al het verkeer ineens naar één baan opschuift. Dat kan voor de wegverkeersleiding een teken zijn dat er sprake is van bijvoorbeeld afgevallen lading, langzaam rijdend verkeer of stilstand. En de data die je verzamelt kun je ook gaan gebruiken om verkeersbewegingen te voorspellen. Het is voorstelbaar dat je met dit systeem ruim van tevoren kunt voorspellen waar en wanneer filevorming ontstaat en dat je vanuit het systeem vervolgens meteen deze informatie naar in-carsystemen verstuurt. Daar kun je overigens de wegverkeersleider als buffer tussen zetten. Het is maar net wat de wegbeheerder wil.”

Gebruikersinterface van het ontwikkelde SOS. (Beeld: Soltegro)

Waar gaat dat naartoe?

“In de wereld van het ‘Internet of Things’ krijgen we steeds meer situaties waarin systemen beslissingen gaan nemen”, vervolgt Franc. “Wij verwachten dat het die kant op gaat. Vandaar onze integrale visie en de keuze om niet de omgeving te detecteren, maar het object dat in die omgeving beweegt. De informatie die door het object wordt gegenereerd, opent nieuwe toepassingsmogelijkheden.” Jan-Martijn Teeuw: “We richten ons nu in eerste aanleg op tunnels, maar er kan natuurlijk veel meer met deze techniek. Je kunt er bijvoorbeeld ook mee detecteren hoe voertuigen in een parkeergarage bewegen. Voor ons is de volgende stap om in gesprek te gaan met beheerders van tunnels waar detectielussen echt niet voldoen. In de praktijk van de tunnelstandaard zie je nu al wel dat er ruimte komt voor projectspecifieke afwijkingen en er wordt al gesproken in termen van ‘standaard of gelijkwaardig’. Daar liggen kansen voor deze vorm van detectie, maar formeel zou de toepassing nu alleen kunnen in niet-rijkstunnels.”

Kennisbank

Artwork: "Library" by Lori Nix | www.lorinix.net

Dit was de Onderbreking Meten is weten

Bekijk een ander koffietafelboek: