Tramtunnel

In 1996 begon de bouw van het Souterrain in Den Haag, een 1.250 meter lange tramtunnel onder de Grote Marktstraat met twee ondergrondse stations en tussen deze stations een 600 meter lange ondergrondse parkeergarage met twee parkeerlagen.

Volgens de planning zou het project voor het jaar 2000 gereed zijn, maar door grondwaterproblemen kwam het project ruim twee jaar stil te liggen en moest voor de afbouw gebruik worden gemaakt van een speciale bouwtechniek. Uiteindelijk werd de tunnel in 2004 in gebruik genomen. Sindsdien wordt hij gebruikt voor diverse tramlijnen en inmiddels ook door RandstadRail.

Tot de bouw van de tunnel werd besloten om het bovengrondse winkelgebied leefbaar en goed bereikbaar te houden. Dat is ondanks de problemen tijdens de bouw uitstekend gelukt. De drukke Grote Marktstraat is veranderd in een rustige, chique winkelpromenade en de ruim dertig trams per uur vervoeren dagelijks duizenden bezoekers naar en van de ondergrondse stations Spui en Grote Markt.


De Haagse tramtunnel, ook wel het Souterrain genoemd. (Foto: Flickr/Marco Raaphorst)

Bouwmethode
De tunnel is gebouwd volgens de wanden-dakmethode om overlast op maaiveld zoveel mogelijk te voorkomen. De wanden bestaan voor het grootste deel uit diepwanden en alleen ter plaatse van de Kalverstraat uit stalen damwanden. Op de meeste plaatsen staan de wanden zeer dicht op de bestaande bebouwing, die voornamelijk op staal is gefundeerd.

Over het grootste deel van het tracé bedraagt de afstand tussen de wanden ongeveer 15 meter, alleen ter plaatse van de stations staan ze circa 25 meter uit elkaar. Op de plekken waar de tunnel 15 meter breed is, is de bouwput aan de onderzijde voorzien van een groutboog, die bestaat uit korte elkaar overlappende jetgroutkolommen in de vorm van een afgevlakte 'U'. De jetgroutboog is aangebracht om het grondwater tegen te houden en om de verticale kracht op de bouwputbodem door de opwaartse waterdruk naar de wanden te leiden. Verder functioneerde de boog tijdens de bouw als stempel voor de wanden. Hiervoor was het nodig dat de boog zo hoog mogelijk in de grond zat, zodat de stempelfunctie optimaal was en de wanden zo min mogelijk zouden vervormen. Het toepassen van een groutboog voor deze drie functies was nieuw.

Ter plaatse van de stations was de bouwput te breed om een groutboog te kunnen toepassen. Hier is gebruik gemaakt van een gellaag voor de verticale stabiliteit en het tegenhouden van het grondwater. Deze oplossing was in ons land al diverse keren met succes toegepast.

Groutboog niet waterdicht

De bouw startte in maart 1996. Het aanbrengen van de diepwanden en damwanden verliep vrijwel zonder verzakkingen van de nabijgelegen bebouwing. Toen het dak was aangebracht werd begonnen met het ontgraven van de bouwput. In februari 1998 was de bouwput op de Kalvermarkt bijna volledig ontgraven, toen er via wellen grondwater omhoog kwam. De groutboog bleek niet waterdicht. Er werd nog geprobeerd om de wellen te dichten met injecties en het aanbrengen van geotextiel en 'big bags' als ballast, maar dit bleek niet te werken. Nadat er naast de damwand een gat in de straat ontstond door weggespoeld zand, werd besloten om de lekkage te stoppen door de bouwput onder water te zetten. Hierdoor kwam de bouw stil te liggen.

Deze situatie duurde uiteindelijke ruim twee jaar. In deze periode werd beoordeeld of de lekkage aan de Kalvermarkt een incident was of dat de onbeheersbare welvorming inherent was aan de in het bestek voorgeschreven bouwmethode met de groutboog. Uit een faalkansanalyse bleek dat de kans om meer lekken in de groutboog groot was en dat het weggraven van grond boven een lekke groutboog alleen veilig is als er voldoende grond achterblijft op de boog. Bij de tramtunnel was een dergelijke gronddekking niet haalbaar, omdat de grond op sommige plekken vrijwel tot op de boog ontgraven moest worden.

Tramkom heeft daarom gezocht naar een alternatieve methode voor het afbouwen van de tunnel. Na verschillende opties te hebben bekeken, is besloten om de delen met een groutboog onder verhoogde luchtdruk (1,14 bar) af te bouwen om te zorgen dat er nauwelijks een verschil zou zijn met de waterdruk onder de groutboog. In juni 2000 werd voor de delen met een groutboog het contract omgezet in een 'design & construct'. Tramkom nam daarmee de verantwoordelijkheid op zich voor het gewijzigde ontwerp. Verder werd afgesproken dat de overige delen van de tunnel volgens het bestek werden afgebouwd.

Verhoogde luchtdruk
Het afbouwen onder verhoogde luchtdruk, had ingrijpende gevolgen. Zo moesten er luchtsluizen worden gemaakt voor mensen en materieel en moest alle afgegraven grond via deze sluizen worden afgevoerd. Om de luchtkwaliteit in de compartimenten met hoge luchtdruk goed te houden werd er alleen met elektrisch materieel gewerkt. Verder konden de bouwers minder lang werken en moesten elke keer bij het verlaten van het compartiment maatregelen worden genomen om 'caissonziekte' te voorkomen.

Ook constructief waren er extra maatregelen nodig om geen problemen te krijgen door de hogere druk. Bij tunnel onder de Kalvermarkt moest de vloer boven de eigenlijke tramtunnel – die al was gestort – tijdelijk met een staalconstructie worden verstevigd. Verder moesten hier groutankers worden aanbracht om te voorkomen dat de stalen damwanden omhooggedrukt zouden worden. Onder de Grote Marktstraat was de vloer boven de tunnel nog niet gestort. Om deze vloer geschikt te maken voor de verhoogde luchtdruk werd hij veel zwaarder uitgevoerd en werd gekozen voor een andere verbinding met de diepwanden. Verder werd er tijdelijk ballast op de vloer geplaatst.

Bemalingsproblemen
In de zomer van 2000 werd ook het ontgraven van de bouwput voor station Spui hervat. In juli ontstond hier een wel, vlakbij het compartimenteringsscherm dat de bouwput van station Spui en de bouwput van de Kalvermarkt scheidde. Deze laatste stond nog onder water. Na enkele uren bezweek het scherm en liep ook de bouwput bij het Spui onder. Om dit probleem te verhelpen werd eerst het scherm versterkt en vervolgens grond tegen het scherm aangebracht. Daarna kon het water uit de bouwput Spui worden gepompt.

De maanden daarna bleef de bemaling – die gedurende de tweejarige bouwstop steeds had gefunctioneerd en water wegpompte tussen de gellaag en een daar boven gelegen veenlaag – problematisch. Filters slibden dicht waardoor onvoldoende grondwater kon worden weggepompt. Daardoor dreigde de waterspanning onder de veenlaag zo hoog te worden dat deze zou opbarsten en vervolgens de diepwanden zouden vervormen.

Om de bemaling weer op het gewenste niveau te krijgen, zijn verschillende maatregelen genomen. De grond uit de bouwput is in sleuven van ongeveer zes meter afgegraven over de breedte van de bouwput. Nadat een sleuf was ontgraven is hierin een werkvloer gestort die tegelijkertijd als stempel diende. Voor de bemaling is een groot aantal grondpalen aangebracht, die op de hoogte van de veenlaag waren 'afgestopt' en daaronder waren voorzien van een filter. Dat maakte het mogelijk om deze palen 'aan' en 'uit' te zetten. Pas als het ontgraven begon startte de bemaling. Door deze werkwijze hoefde de bemaling per sleuf slechts drie weken te werken.

Inzichten
Door alle problemen werd de tunnel uiteindelijk ruim vier jaar later in gebruik genomen dan gepland en namen de bouwkosten met circa 100 miljoen euro toe. Na deze moeilijke start, functioneert de tunnel goed. De problemen hebben ook tot de nodige inzichten geleid. Zo concludeert de Delftse hoogleraar funderingstechniek Frits van Tol in 2004 in een artikel in het blad Geotechniek onder andere dat de Tramtunnel nog eens heeft duidelijk gemaakt dat bij ondergronds bouwen:

  • voldoende robuust moet worden ontworpen
  • rekening moet worden gehouden met afwijkingen in de bodem en de gerealiseerde (deel)constructies
  • vooraf moet worden geïnventariseerd welke gevolgen het falen van onderdelen van de constructie hebben
  • en vooraf maatregelen moet zijn voorbereid om de gevolgen van falen te minimaliseren.

Ook geeft hij aan dat bij de toepassing van waterkerende lagen die zijn gemaakt met groutinjecties, altijd rekening moet worden gehouden met lekken. Verder adviseert hij om softgellagen alleen als waterremmende laag te gebruiken als de bouwfase niet langer dan twee jaar duurt.

Ook interessant:

Locatie:

  • Centrum van Den Haag

Start bouw:

  • 1996

Ingebruikname:

  • 2004

Soort tunnel:

  • Tram- en lightrailtunnel

Totale lengte:

  • 1.250 meter

Gesloten deel:

  • 1.200 meter

Laagste punt:

  • 13.5 meter benden NAP

 

Bouwmethode:

  • Wanden-dakmethode, deels
  • onder overdruk

 

Bouwkosten:

  • € 234 miljoen

 

 

Opdrachtgever:

  • Gemeente Den Haag, dienst Stadsbeheer

Aannemers:

  • Tramkom, een consortium van Van Hattum en Blankevoort, Strukton Betonbouw en Ballast Nedam.

Architect:

  • Rem Koolhaas, the Office for Metropolitan Architecture (OMA)

Overzicht

De Haagse tramtunnel werd op 16 oktober 2004 geopend door minister Karla Peijs en burgemeester Wim Deetman van Den Haag. Een chronologisch overzicht van de werkzaamheden is te vinden op de website van Haagse Tram Vrienden.

Hoge zuurgraad

Naderhand is onderzocht waarom de onttrekkingsfilters dichtslibden. Hiervoor zijn onder meer laboratoriumexperimenten uitgevoerd. De conclusie is dat het grondwater dat door de gellaag omhoog stroomde, het surplus aan natriumhydroxide uit de gellaag oploste. Hierdoor nam niet alleen de doorlatendheid van de gellaag langzaam toe maar ook de zuurgraad (pH) in de bodem boven de gellaag. Door de uitzonderlijke lange periode dat dit gebeurde – onder andere door het blijven bemalen tijdens de bouwstop – werd de pH zo hoog dat organisch materiaal in het grondwater oploste. Hoger boven de gellaag, zoals op het niveau van de onttrekkingsfilters, nam de pH nauwelijks toe. Daardoor is het organisch materiaal hier neergeslagen met verstopte filters als gevolg.