Loading...

De Onderbreking

Kabels en leidingen

Kabels en leidingen

Bundelen onder de boulevard

Den Haag Rotterdamsebaan

Visie van: Egbert van der Wal

City Deal moet ook aardgasvrij dichterbij brengen

Afstudeeronderzoek: leidingen en aardbevingsbelasting

Beheren, meten en optimaliseren

Harderwijk, Parkeergarage Houtwal

In Focus: Ondergronds in Overijssel

In Focus: Pionieren met waterleidingen

Kennisbank

Kabels en leidingen

Slimme oplossing voor kabels en leidingen in Scheveningse boulevard

Geslepen schelpenasfalt en basalt-lavastenen ingebed in beton. Die sieren grote delen van de nieuwe boulevard in Scheveningen. De fraaie, kostbare en moeilijk te herstellen bestrating slijp je niet zomaar door om een kapotte kabel of leiding te repareren of te vervangen. Daarom is gekozen voor een uitgekiend systeem met mantelbuizen en leidingputten. Zo zijn alle kabels en leidingen voor de strandpaviljoens en kiosken bereikbaar en vervangbaar.

“Met de werkzaamheden aan de boulevard zijn we in 2009 begonnen”, vertelt Leo den Dulk van het Ingenieursbureau Den Haag. “Een aantal jaren eerder was gebleken dat de Scheveningse kust moest worden versterkt om te voldoen aan de veiligheidsnormen. De gemeente Den Haag wilde niet alleen een veilige kust, maar ook een boulevard die esthetisch aantrekkelijk is. Dat heeft geleid tot een gecombineerd project. Het hoogheemraadschap van Delfland en Rijkswaterstaat hebben de waterkering versterkt en de gemeente heeft de herinrichting op zich genomen. Het project kende dus drie opdrachtgevers, waarbij het Ingenieursbureau Den Haag een sleutelrol speelde.”

Flaneren

Den Dulk vervolgt: “Voor het vergroten van de veiligheid is een nieuwe zeedijk gebouwd en is het strand met suppleties verbreed en opgehoogd. Op deze manier kon de hoogte van de dijk zelf beperkt blijven. Het mooie is dat de dijk volledig is weggewerkt in de nieuwe boulevard, die is ontworpen door de Spaanse architect De Solà Morales. De boulevard is aan de zeezijde tegen de dijk aangebouwd en ziet er totaal anders uit dan de oude. Zo is de nieuwe boulevard niet langer recht, maar volgt hij het golvende verloop van de oude duinen en heeft hij een aantal hoogteverschillen die auto’s, fietsers en voetgangers van elkaar scheiden. Verder is er nu veel meer ruimte voor voetgangers. Bij de oude boulevard was circa zeventig procent van de ruimte gereserveerd voor het autoverkeer en fietsers; nu is bijna tachtig procent voor voetgangers die daar heerlijk kunnen flaneren.”

“Een ander verschil is de inrichting van de boulevard en het strand. Voorheen stonden overal op de boulevard aansluitkasten voor de paviljoens die her en der op het strand neergezet werden. De Solà Morales wilde dat niet en heeft een ontwerp gemaakt waarbij er naast vijf zogeheten landmarks en vijf kiosken niets op de boulevard staat. Verder is hij in zijn ontwerp uitgegaan van vijf clusters met paviljoens nabij de landmarks en heeft hij gekozen voor mooie materialen voor de bestrating. Zo zijn grote delen van de boulevard verhard met geslepen schelpenasfalt en basalt-lavastenen die zijn ingebed in beton. Kostbare en lastig te herstellen bestrating die je niet opengooit als er problemen met kabels of leidingen zijn.”

Gebundelde oplossing

“Vanaf het moment dat we wisten dat deze verhardingen er zouden komen, zijn we intensief gaan overleggen met alle kabel- en leidingenbeheerders”, zegt Richard van Toorenburg van adviesbureau J. van Toorenburg. “Al vrij snel hebben we aangestuurd op een gebundelde oplossing met mantelbuis-putconstructies. Uiteindelijk hebben alle beheerders hiermee ingestemd, maar het was een moeizaam proces om dat voor elkaar te krijgen. Zo wil een beheerder van een gasleiding bijvoorbeeld niet dat er vlakbij zijn leiding een elektriciteitskabel komt te liggen en zo heeft iedereen zijn wensen.”

“Toen de kogel door de kerk was, zijn we bij alle gebruikers langsgegaan om te inventariseren welke aansluitingen ze allemaal wilden hebben. Vervolgens konden we de capaciteit van de hoofdnetten bepalen en starten met de ontwerpen van de leidingtracés en onderhoudsputten. We zijn uitgegaan van negen putten en gelaste HDPE mantelbuizen als bescherming voor alle kabels en leidingen. Om ervoor te zorgen dat er in de toekomst ruimte is voor uitbreiding hebben we ook een aantal reserve mantelbuizen aangebracht op het hoofdtracé. Deze zijn ruim twee kilometer lang en liggen onder de dichte verharding. De combinatie van onderhoudsputten met daartussen mantelbuizen biedt de mogelijkheid van vervanging. Mocht er namelijk ooit een kabel of leiding kapot gaan, dan kun je de betreffende kabel of leiding uit de mantelbuis tussen twee putten trekken en een nieuwe terugplaatsen.”

De toegepaste onderhoudsputten zijn ongeveer 7,5 meter lang en 2,5 meter breed en hoog. Ze zijn op verzoek van de architect uitgevoerd in cortenstaal en hebben twee zware toegangsdeksels, die goed zijn in te passen in de bestrating. In de putten takken de kabels en leidingen van het centrale tracé af naar de verschillende gebruikers op de boulevard en naar de aansluitboxen voor de strandpaviljoens die onder het strand zitten. Alle verbruiksmeters zijn ondergebracht in de kiosken op de boulevard.

(Foto: J. van Toorenburg)

Strenge eisen

“Het ontwerpen van de onderhoudsputten was een hele uitdaging”, vult Nico Buijs van Boeg BV Constructiewerken aan. “In de eerste plaats doordat ze bijvoorbeeld verschillende groottes hebben, en het aantal doorvoeren voor de kabels en leidingen varieert. Vaak hebben we ook nog vlak voor de plaatsing wijzigingen moeten doorvoeren. Daarnaast hadden we bij het ontwerpen te maken met de strenge eisen die het hoogheemraadschap van Delfland als waterkeringbeheerder stelt aan alle objecten in en op de boulevard. De zeedijk moet een megastorm kunnen weerstaan die statistisch eens in de tienduizend jaar voorkomt. Bij zo’n storm zal een stuk strand wegslaan en zal ook de boulevard kapotgaan. Om te voorkomen dat brokstukken van de boulevard in dat geval de zeedijk beschadigen, mogen objecten in en op de boulevard niet zwaarder zijn dan zevenhonderd kilo. En als ze wel zwaarder zijn, moeten ze bij de storm uiteenvallen in stukken van maximaal zevenhonderd kilo. Om daarvoor te zorgen – de grootste put weegt circa 4.300 kilo – hebben we sommige lasnaden zo gemaakt dat ze het begeven bij grote belastingen.”

Strakke planning

Volgens Toorenburg was verreweg de grootste uitdaging de strakke planning: “Met de aanleg van alle kabels en leidingen moesten wij voor de hoofdaannemer uit werken. De boulevard is in vier delen gerealiseerd. Voordat de hoofdaannemer aan een deel begon, hadden wij gemiddeld vier weken om alle mantelbuizen en putten voor dat deel aan te brengen. Tijdens de bouw van de boulevard brachten we vervolgens alle leidingen en kabels van de nutsbeheerders aan. Vaak deden we dat ’s avonds om de hoofdaannemer niet in de weg te zitten. Na afronding van een boulevarddeel en voordat met een nieuw deel werd begonnen, maakten we alle aansluitingen van de paviljoens. Om al deze werkzaamheden te realiseren hebben we in die perioden van vier weken zeven dagen per week tien uur per dag gewerkt. Verder hebben Den Dulk en ik veel toezicht gehouden op alle werkzaamheden en gezorgd dat we altijd bereikbaar waren. Daardoor konden we snel handelen als er zich problemen voordeden. En omdat we een goed team waren met de juiste mensen op de juiste plaats, hebben we alle problemen steeds het hoofd kunnen bieden en alles volgens planning kunnen opleveren.”

Rotterdamsebaan

De gemeente Den Haag werkt aan een nieuwe verbindingsweg tussen knooppunt Ypenburg (A4/A13) en de Centrumring: de Rotterdamsebaan. Deze weg wordt 3,8 kilometer lang en doorkruist het grondgebied van de gemeenten Leidschendam-Voorburg, Rijswijk en Den Haag. Onderdeel is een geboorde tunnel, de Victory Boogie Woogietunnel, die tweemaal twee rijstroken krijgt en ongeveer 1.860 meter lang wordt.

De Utrechtsebaan is de belangrijkste toegangsweg van Den Haag. Van het verkeer dat de stad dagelijks in- en uitgaat, rijdt veertig procent via deze weg. Dat leidt elke dag tot files die zich vaak uitbreiden naar de omringende snelwegen zoals de A12, A13 en A4. De aangrenzende woonwijken hebben veel last van sluipverkeer. De nieuwe Rotterdamsebaan zorgt ervoor dat de druk op de Utrechtsebaan afneemt en het verkeer zich beter verdeelt. Met de nieuwe weg krijgt het verkeer van en naar Rotterdam, Delft en Ypenburg een alternatief.

Tracé

De Rotterdamsebaan loopt van het knooppunt Ypenburg richting het noorden, kruist met een tunnel het groene gebied de Vlietzone, het water de Vliet en de woonwijk Voorburg-West en komt uit op de Binckhorstlaan. Daar sluit de nieuwe weg bij de Neherkade direct aan op de Centrumring. Het tracé komt grotendeels overeen met de ligging van de tweede toegangsweg die architect Dudok – die na de Tweede Wereldoorlog de leiding had over de wederopbouw van Den Haag – in zijn plannen had opgenomen. De inpassing van de nieuwe verbindingsweg was een complexe opgave. Uiteindelijk heeft de inspraakprocedure ertoe geleid dat het ondergrondse deel van het tracé driehonderd meter langer wordt dan technisch gezien noodzakelijk is. Met de verlenging is de gemeente tegemoetgekomen aan bezwaren van omwonenden en andere belanghebbenden.

Artist impression van de skyline vanuit de Vlietzone. Op het dak van de tunnel zijn de geplande zonnepanelen te zien. (Beeld: Rotterdamsebaan)

Victory Boogie Woogietunnel

De tunnel, die Victory Boogie Woogietunnel gaat heten, wordt geboord. Hiervoor maakt de aannemerscombinatie (zie rechts) gebruik van de tunnelboormachine waarmee eerder de Sluiskiltunnel is aangelegd. De tunnel wordt 1.860 meter lang, waarbij het geboorde deel een lengte heeft van circa 1.640 meter. De twee tunnelbuizen komen op ongeveer vier meter van elkaar te liggen, krijgen een diameter van ruim tien meter en liggen op het diepste punt 29 meter onder de grond. In iedere buis komen twee rijstroken en tussen de buizen komt om de 250 meter een dwarsverbinding.

Duurzame infrastructuur

De Rotterdamsebaan moet hét voorbeeld van duurzame infrastructuur in Nederland worden. De Combinatie Rotterdamsebaan heeft in het ontwerp veel aandacht besteed aan de verschillende duurzaamheidsaspecten, zoals vormgeving en inpassing in het landschap, luchtkwaliteit en energiegebruik. Een goed voorbeeld is de tunnelmond in de Vlietzone. Hier komt over het dienstgebouw en de tunnelmond een grote overkapping die bestaat uit zonnepanelen. De elektriciteit die hiermee wordt opgewekt, zal worden gebruikt in het dienstgebouw. Een ander voorbeeld is het fine dust reduction system, een systeem waarmee vijftig procent van het fijnstof bij de tunnelmonden wordt afgevangen.

Planning

In 2014 is de gemeente gestart met het bouwrijp maken van het tracé en in 2015 is een aantal wegen in de Binckhorst opnieuw ingericht. Eind 2015 is de aanbesteding afgerond en is de opdracht, in de vorm van een design-, built- en maintenancecontract met vijftien jaar onderhoud, gegund aan de Combinatie Rotterdamsebaan. In 2016 heeft de gemeente de laatste voorbereidende werkzaamheden afgerond, waarna de aannemerscombinatie van start kon met het inrichten van de werkterreinen in de Vlietzone, de Binckhorst en het knooppunt Ypenburg.

Het boren van de Victory Boogie Woogietunnel startte half januari 2018. Vanuit de startschacht op het werkterrein in de Vlietzone graaft tunnelboormachine Catharina-Amalia haar weg naar de Binckhorst. Naar verwachting komt ze daar in juni 2018 aan. Vervolgens wordt de machine gedemonteerd en teruggebracht naar de Vlietzone. Nadat de machine weer is opgebouwd, start het boren van de tweede tunnelbuis. De opening van de Rotterdamsebaan staat gepland voor 1 juli 2020.

Voorbereiding

Om onder de grond alvast ruimte te maken voor de tunnel van de Rotterdamsebaan, moesten grote stroomkabels verlegd worden. De gemeente Den Haag maakte een video over deze indrukwekkende klus. Over een afstand van liefst een kilometer werd tot vijfendertig meter diep onder de grond een gestuurde boring uitgevoerd.

Tijd voor actie

“Havenbedrijf Rotterdam heeft optimalisering van doorvoermogelijkheden en kansen voor bedrijvigheid hoog in het vaandel staan. Daarom wordt de komende jaren ingezet op het zo efficiënt mogelijk benutten van de nog schaars aanwezige besteedbare ruimte. Dit geeft een dynamiek waarbij aspecten zoals inventiviteit, samenwerking en doorzettingsvermogen belangrijk zijn.

Van 2010 tot 2012 was ik voor Havenbedrijf Rotterdam werkzaam in het Midden-Oosten bij Port of Sohar in Oman. De ontwikkel- en opstartfase waarin deze nieuwe haven zich bevond en de zee aan ruimte in de woestijn, zorgden ervoor dat er weinig belemmeringen waren om infrastructuur te ontwikkelen. In een bestaande haven zoals Rotterdam is die luxe er niet. Er is beperkte fysieke ruimte voor nieuwe infrastructuur, waardoor complexe technische en operationele interacties ontstaan.

Sinds oktober 2013 geef ik leiding aan de nieuwe afdeling engineering, die onder andere verantwoordelijk is voor de voorbereiding, het ontwerp en de realisatie van boven- en ondergrondse infrastructurele werken. Deze afdeling is opgezet om technische kennis en ervaring van onze eigen mensen te waarborgen en de nieuwste kennis in huis te halen. Door inzet van nieuwe oplossingstechnieken en het initiëren en begeleiden van verregaande samenwerking waarin iedereen elkaars belangen probeert te begrijpen, zoeken we binnen projecten naar integrale oplossingen. De wil om er samen uit te komen, de toevoeging van frisse blikken en vroegtijdig samenwerken, zorgen voor een uitkomst die meer is dan de som der delen. Cliché, maar waar.

Deelname aan kennisplatforms zoals het COB dagen uit tot nieuwe ideeën die waarde creëren, en zorgt voor wederzijdse vooruitgang. Vanuit verschillende oogpunten en werkvelden wordt hier nagedacht over nieuwe kansen. Kruisbestuiving en over de grenzen van je eigen werkveld heen kijken, leveren mogelijkheden voor integrale oplossingen voor bestaande problemen en voorkomt toekomstige problemen.

Eén ding is zeker, op dit moment is veel onzeker en verandert de wereld snel. Je positie versterken is alleen mogelijk als je met onzekerheid durft om te gaan en adaptief blijft, zodat je de veranderingen voor jou kan laten werken. Alleen door op vele fronten samen te werken en zelf bij te dragen aan nieuwe kennis, kansen en mogelijkheden kun je blijven groeien.”

Egbert van der Wal werkt sinds 2008 voor het Havenbedrijf Rotterdam en is sinds kort manager engineering van de nieuw opgezette projectengineering afdeling. Egbert is hiervoor betrokken bij COB, SBRCURnet en samenwerkingsverbanden met universiteiten en hogescholen. Ook is hij bestuurslid van PIANC Nederland.

(Foto: Vincent Basler)

City Deal moet ook aardgasvrij dichterbij brengen

In 2016 lanceerde Amsterdam de strategie Naar een stad zonder aardgas. Nieuwbouwgebieden worden al niet meer op aardgas aangesloten. Voor de bestaande bouw kiest Amsterdam voor een gebiedsgerichte aanpak. Daaraan wordt invulling gegeven met een zogeheten City Deal, een samenwerkingsverband van netbeheerders, woningcorporaties, warmteleveranciers en het Rijk. De Van der Pekbuurt in Amsterdam-Noord is aangewezen als pilot.

Er is afgesproken dat per gebied wordt bekeken wat de beste aanpak is en welke alternatieven voor aardgas het meest geschikt zijn. Ook alternatieven als volledig elektrische warmtesystemen of geothermie komen daarbij in beeld. Essentieel is dat de transitie in samenhang met andere opgaven wordt bekeken. Adviseur stedelijke programmering Ruben Klijn: “We hebben nog meer opgaven, zoals herinrichtingsprojecten, het autoluw maken van de binnenstad, klimaatbestendig inrichten en de sociale wijkaanpak. We willen deze opgaven combineren om tot integrale afwegingen te komen. De energietransitie is belangrijk, maar is dus niet de enige opgave. Er spelen veel verschillende belangen in de openbare ruimte. De gemeente wil ten aanzien van het aardgasvrij maken van de stad keuzevrijheid bieden. We onderzoeken nu hoe we dat proces het best structureel kunnen inrichten. In de tussentijd gaan de ontwikkelingen gewoon door.”

Pilotproject

Een van die tussentijdse ontwikkelingen betreft de Van der Pek- en Gentiaanbuurt in Amsterdam-Noord. De directe aanleiding om daar aan de slag te gaan, was het besluit van woningbouwcorporatie Ymere om het woningbezit in die wijk duurzaam te renoveren en van het gas af te halen. De woningen worden volledig gerenoveerd. De straten zijn smal, en voor woningen aan de andere kant van de straat moet de gasaansluiting gehandhaafd blijven. Nuon Warmte heeft een inschatting gemaakt van de toekomstige stadsverwarmingsbehoefte, en heeft mede op basis daarvan met Ymere een contract gesloten voor de levering van stadswarmte voor vijftien jaar.

De Van der Pekbuurt is een arbeiderswijk uit begin twintigste eeuw aan de noordoever van het IJ. (Foto: gemeente Amsterdam/Koen Smilde Photography)

Stadsdeelregisseur in Amsterdam-Noord Eric van den Beuken: “Het gaat in eerste aanleg om 38 woningen in het eerste van zeven blokken in de Gentiaanbuurt. Er is geen primair warmtenet in de buurt en er moet dus gebruikgemaakt worden van tijdelijke warmtecentrales die ergens in de openbare ruimte geplaatst moeten worden. Daarnaast moet er een warmte-overdrachtstation gerealiseerd worden dat de warmtelevering voor drie- tot vijfhonderd aansluitingen kan verzorgen. Aardgasvrij organiseren via stadswarmte laat dus ook zichtbare sporen na in de openbare ruimte die in deze toch al smalle wijken steeds meer onder druk staat.”

Puzzel

Ruben Klijn: “De renovatieplanning van Ymere is autonoom. Daaruit volgt het verzoek aan Nuon Warmte om een aansluiting op het warmtenet te realiseren. Nuon Warmte richt zich tot de gemeente voor vergunningen en dergelijke. Voor Ymere is dit een heel strategisch besluit. Zodra de investeringsbeslissing is genomen, wil men uiteraard zo snel mogelijk tot uitvoering komen. Nuon heeft een wettelijke leveringsplicht. Dat leidt tot de puzzel die we nu proberen te leggen. Waarbij een belangrijke vraag is of er überhaupt plaats is in de ondergrond. Andere stakeholders in de ondergrond, Waternet, Liander en KPN, willen mee in dit project. Maar de vraag blijft: halen we december 2018, het moment waarop de eerste gerenoveerde woningen worden opgeleverd, of moeten de bewoners de boel de eerste maanden verwarmen met straalkachels?”

Halen we december 2018 of moeten de bewoners de boel de eerste maanden verwarmen met straalkachels?

Stevige ambitie

De pilot in de Van der Pekbuurt moet bijdragen aan een aanpak waarmee het aardgasvrij maken van wijken steeds sneller kan verlopen. In de overeenkomst die de gemeente Amsterdam met woningcorporaties heeft gesloten, is afgesproken dat zij een leidende rol hebben in dit transitieproces – alleen Ymere heeft al meer dan 40.000 huurwoningen in Amsterdam. Maar ook met de ‘grote stappen’ die langs deze weg gezet kunnen worden, is de uitdaging om de ambitie van de gemeente Amsterdam waar te maken, bijzonder groot. Senior adviseur Ruimte en Duurzaamheid Theun Koelemij: “De corporaties hebben hun plannen voor de komende jaren kenbaar gemaakt. Op basis daarvan hebben we een kaartje gemaakt, waarop de eerste 10.000 woningen die van het gas af gaan, zijn ingetekend. De ambitie uit het coalitieakkoord – aardgasvrij in 2040 – vraagt een tempo van gemiddeld 20.000 woningen per jaar. In 2018 zullen er weer 20.000 worden aangewezen. We moeten dus razendsnel leren en het tempo fors verhogen. Dat Amsterdam in 2040 aardgasvrij moet zijn, is de enige zekerheid.”

De snelheid waarmee aardgasvrij bereikt moet worden, zal ongetwijfeld betekenen dat er ook na de Van der Pekbuurt wijken zullen volgen waarvoor nog geen kant-en-klaar plan van aanpak beschikbaar is. In de tussentijd wordt met de City Deal wel gewerkt aan een integrale aanpak die het aardgasvrij maken zo soepel mogelijk moet verbinden met de genoemde andere opgaven in de stad. Theun Koelemij: “We hebben een Datasquad ingericht waarmee we alle planningen in kaart brengen en op elkaar kunnen afstemmen. Ook daarin werken we samen met Waternet (riool en water), Liander (gas/elektra), Nuon Warmte en de corporaties.”

Gemeenten aan zet?

Aan de Klimaattafels, waar het aardgasvrij maken van Nederland wordt voorbereid, lijkt men eensgezind over het feit dat gemeenten de regie moeten hebben. Zover is het in de praktijk nog niet. Eric van den Beuken: “De gemeente heeft op dit moment geen sleutels om op te treden of af te dwingen, maar kan de beschikbare privaatrechtelijke instrumenten desgewenst wel op-en-top uitnutten.” In de praktijk van de City Deal is het nu nog niet nodig dat Amsterdam zijn spierballen laat zien. De grote winst van de City Deal-aanpak is dat alle betrokken partijen weten en accepteren dat je (in de ondergrond) niet solo kunt opereren. Andere partijen hebben ook behoefte aan regie. En iedereen is gecommitteerd aan een gezamenlijke integrale aanpak. Of dat zo blijft, is overigens de vraag. Theun Koelemij: “De aanpak die we nu hanteren, wordt breed gedragen. Maar we moeten ons realiseren dat we tot nu toe vooral op relatief kleine schaal werken. Als we straks naar 20.000 woningen per jaar gaan, gaat het pas echt pijn doen. Al was het maar omdat we niet ieders planning kunnen volgen en partijen investeringen dus sneller moeten afschrijven.”

Leren in de praktijk

In de Van der Pekbuurt zal grotendeels nog sprake zijn van ad-hoc-oplossingen. “Wat we in deze fase leren,” zegt Eric van den Beuken, “is dat de regierol niet goed is belegd, dat nog onduidelijk is wie welke kosten draagt, dat we niet weten hoe het stelsel van vergunningen en procedures vormgegeven dan wel aangepast moet worden om de renovatieplanningen van private partijen mogelijk te kunnen maken. Daarbij komt dat we ons moeten realiseren dat we als overheid veranderingen wel kunnen stimuleren, maar dat acceptatie uiteindelijk afhankelijk is van hoe wij als overheid verschillende opgaven slim weten te combineren. Voor dat slim combineren bestaat geen masterplan. Het hangt – ook in technische zin – af van de lokale situatie. Heb je een warmtebron in de buurt of niet? Dat maakt al een groot verschil. Je kunt uiteindelijk misschien voor tachtig procent tot standaardisatie komen, maar er zal altijd een stukje maatwerk nodig zijn. Afhankelijk van breed genoeg gedragen ‘sense of urgency’ in de buurt heb je incentives nodig om te kunnen veranderen. Het proces begint met het uitspreken van wat je wilt bereiken. Het tempo waarin je die ambitie kunt bereiken, is ook afhankelijk van wat mensen willen, en de mate waarin je dwingend wilt optreden.”

Toetsen van leidingen op aardbevingsbelasting

Sinds een aantal jaren neemt de frequentie alsmede de zwaarte van aardbevingen in Noord- Nederland als gevolg van de aardgaswinning toe. De overheid en het bedrijfsleven vragen zich af of bestaande en nieuwe ondergrondse leidingen bestand zijn tegen toekomstige aardbevingen. Onno Walta heeft voor behalen van de titel Master of Pipeline Technology een methode ontwikkeld waarmee de kans op bezwijken door het passeren van een aardbevingsgolf kan worden bepaald. De methode sluit aan op de huidige normen van de NEN 3650 serie en Eurocode.

Voor natuurlijke aardbevingen – tektonische aardbevingen als gevolg van het verschuiven van aard-schollen – bestaan al methoden om de bestendigheid van constructies te berekenen. De aardbevingen in Noord-Groningen worden door gaswinningen veroorzaakt. Zulke geïnduceerde aardbevingen kunnen andere gevolgen hebben voor ondergrondse leidingen, omdat de duur van de beving korter is en de beving op een ger ingere diepte plaatsvindt. Het afstudeeronderzoek van Onno Walta richtte zich op het berekenen van de invloed van dit type aardbevingen op buisleidingen.

Geïnduceerde aardbevingen introduceren extra spanningen en vervormingen in de leidingwand, die kunnen leiden tot falen of bezwijken van de leiding. Om de extra spanningen te berekenen, is in de thesis gebruikgemaakt van de theorie van Spangler uit de NEN 3650. Het blijkt dat slechts enkele parameters significante invloed hebben op de spanningen in de buisleidingwand.

Door heel Nederland liggen er leidingen in de grond voor het transport van gas. (Foto: Gasunie).

Ringspanning

De maatgevende grond- en aanlegparameters bepalen de grootte van de tangentiële ringspanningen in de buiswand. De ontwikkelde methode start daarom met het bepalen van de gemiddelde waarde en standaardafwijkingen in die parameters. Met deze parameters als invoer wordt de gemiddelde en de karakteristieke tangentiele buiswandspanning berekend. Naast de grondbelasting wordt de ringdoorsnede van de buisleiding ook belast door druk vanuit de aardbevingsgolf. Deze dynamische belasting is kort, maar wel éénzijdig. Dit heeft tot gevolg dat er extra tangentiële spanningen in de buiswand ontstaan. De grootte van deze dynamische belasting is met behulp van Plaxis bepaald.

Aardbevingsgolven veroorzaken ook belasting in de axiale richting van de buis. De grootte van de belasting hangt af van de zwaarte van de aardbeving alsmede van de samenstelling van de dertig meter grond direct onder het maaiveld. Schattingen of metingen geven de maatgevende parameters voor het berekenen van de gemiddelde en de karakteristieke axiale spanningen. Bij die berekening is de opbouw van de buisleiding van belang. Bij continue leidingen zonder koppelingen ontstaan door de opgelegde grondverplaatsingen vanuit de aardbevingsgolf buigende momenten en axiale krachten in de buisleiding. Het effect van de aardbevingsgolf is onder ander afhankelijk van de hoek van inval ten opzichte van de as van de buisleiding.

Bij leidingen opgebouwd uit korte buizen, ofwel discontinue leidingen, concentreren de opgelegde grondverplaatsingen zich als hoekrotaties in de koppelingen. De grootte van de hoekrotatie is afhankelijk van de grootte van opgelegde grondverplaatsingen en van de verhouding n = golflengte aardbeving λ / buislengte Lbuis. Voor grote verhoudingen van n volgt de buis als het ware de golfbeweging in de grond. De hierbij optredende hoekrotaties zijn voor omstandigheden in Groningen maximaal 1,2°. De optredende buigende momenten en axiale krachten zijn bij discontinue leidingen lager dan bij continue leidingen. Bij toenemende buislengte nemen de grootte van de buigende momenten en axiale krachten toe terwijl de grootte van de hoekrotaties afneemt.

De grafiek toont de hoekrotatie van discontinue leidingen als functie van de verhouding golflengte en buislengte. Factor alfa is een hulpgrootheid om de grootte van de hoekverdraaiing te berekenen.
(Grafiek: Onno Walta)

 

 

Interactie

Hoewel een aardbevingsbelasting een dynamische belasting is, wordt de berekening quasi statisch uitgevoerd. Voor een rechte veldstrekking zonder bochten of aansluitingen is deze benadering verantwoord. Per buismateriaal wordt de interactie tussen de axiale en tangentiële spanningen bepaald voor de gemiddelde waarde en karakteristieke spanningen. Voor de combinatie buisdiameter, doorsnede en toelaatbare materiaalspanning wordt de bezwijkspanning berekend. Hierdoor is het mogelijk met behulp van Excel de toetsing uit te voeren.

Voor zowel voor de belasting op de buisleidingen als de weerstand van de buisleidingen tegen de belasting, zijn nu de gemiddelde waarden met bijbehorende standaardafwijking vastgesteld. Deze waarden worden gebruikt in de toetsing gebaseerd op een analyse volgens de First Order Methode uit de Eurocode NEN-EN 1990 +A1/C2:2011. Dit is een probabilistische bovengrensbenadering op niveau II. Met behulp van een wiskundige bewerking wordt de betrouwbaarheidsfactor β berekend, waarmee ook de kans op bezwijken bekend is. Met deze kans kan men afwegen welke maatregelen men moet nemen om de gevolgen van een aardbeving te minimaliseren.

Beheren, meten en optimaliseren

Vanuit het Network Operation Center (NOC) in Oss beheert SPIE allerlei telecommunicatienetwerken. Operators bewaken de netwerken dag en nacht en sturen monteurs op pad bij (dreigende) storingen. Volgens Jacco Saaman, Business Development & Innovation, biedt het NOC ook kansen voor live monitoring van installaties en procesoptimalisaties op basis van big data analyses.

“Met de ontwikkeling van zogeheten smart cities wordt supersnelle glasvezelinfrastructuur steeds belangrijker. Dynamische route-informatiesystemen, intelligente openbare verlichting, actuele reisinformatie bij haltes van openbaar vervoer, energiemonitoringsystemen en systemen voor het op afstand bewaken en bedienen van sluizen, bruggen en tunnels vragen om snel en betrouwbaar dataverkeer. Daar zorgen wij voor door de netwerken continu in de gaten te houden en direct in te grijpen als wij een verminderde werking of storing zien of een storingsmelding ontvangen van een klant”, vertelt Ad Schippers, manager van de businessunit Network Solutions van SPIE.

In het NOC in Oss zitten circa acht operators achter bureaus met drie beeldschermen. Tegenover hen staat een paneel met enorme schermen, dat vrijwel de gehele breedte van de ruimte inneemt. Van hieruit beheren zij in ploegendiensten vierentwintig uur per dag en zeven dagen per week voor diverse klanten kabelnetwerken voor data-, telecommunicatie en kabeltelevisie. Ook houden ze de gas-, water- en elektriciteitsnetwerken van diverse recreatieparken in de gaten.

Het Network Operation Center (NOC) in Oss. (Foto: SPIE)

Nieuwe kansen

Naast het beheren en operationeel houden van de netwerken zelf, monitort SPIE vanuit het NOC ook steeds vaker actieve netwerkapparatuur. Schippers: “In steeds meer netwerkapparatuur zijn alarmgrenzen ingebouwd die het mogelijk maken om te zien of een apparaat het einde van zijn levensduur nadert. Als we dat zien, vervangen we de apparatuur preventief om uitval te voorkomen. Op een vergelijkbare wijze monitoren we ook steeds vaker installaties die aan het netwerk zijn verbonden en zijn voorzien van sensoren. Door die sensoren kunnen we op afstand vaststellen hoe ze functioneren.”

Zijn collega Saaman vult aan: “De mogelijkheid om installaties live en op afstand te volgen, biedt veel nieuwe kansen. Neem de ventilatoren in een verkeerstunnel. In protocollen is vastgelegd onder welke omstandigheden ze inschakelen, bijvoorbeeld als de snelheidsverschillen tussen twee rijbanen boven een bepaalde waarde komen. In de praktijk blijken de regelparameters zo scherp geformuleerd, dat de ventilatoren vaak aangaan. Dat kost veel energie. Ik ben ervan overtuigd dat we dit soort regelingen op termijn kunnen verbeteren als we vanuit een NOC alle operationele data verzamelen en analyseren.”

Cyber security

Als voorbereiding op deze nieuwe activiteit werkt SPIE onder andere samen met ECN en TNO. Deze kennisinstellingen ontwikkelen slimme algoritmes om tot verbetervoorstellen te komen. Ook heeft SPIE al een aantal experts aangetrokken die over een helikopterview beschikken en goed zijn in het ontleden van vraagstukken en het vinden van logische verbanden. Vaardigheden die in de ogen van Saaman vereist zijn om big data goed te kunnen analyseren. Toch is het bedrijf volgens hem nog niet helemaal klaar voor optimalisaties op basis van big data analyses: “Als je gaat werken met data die voor de bediening van infrastructuur wordt gebruikt, moet je de cyber security ontzettend goed hebben geregeld. We zijn op dit gebied al een heel eind op weg –we zijn bijvoorbeeld hard bezig met de ISO-27001-certificering – maar moeten nog wel een aantal stappen zetten.”

Openbare netwerken

Saaman vervolgt: “Vooral operationele hacking moet je te allen tijde weten te voorkomen. Stel je het nachtmerriescenario maar voor dat een hacker een brug openzet zonder de stoplichten te activeren en de slagbomen neer te laten. De vrees voor dit soort gebeurtenissen is onder andere de reden dat Rijkswaterstaat een eigen glasvezelnetwerk heeft voor de bediening van al zijn infrastructuur en installaties. Toch verwacht ik dat er een moment komt waarop organisaties als Rijkswaterstaat gebruik gaan maken van openbare netwerken. Niet alleen omdat specialisten op het gebied van cyber security schaars zijn, maar ook omdat netwerkbeheer en data-analyse niet tot hun kernactiviteiten behoren. Door deze activiteiten bij een gespecialiseerde partij onder te brengen, kunnen ze zich volledig richten op de dingen waar ze goed in zijn. En het bijkomende voordeel is dat ze niet hoeven te investeren en geen personeel in dienst hoeven te nemen voor het dag en nacht bewaken van het netwerk.”

Slimme kabels

Met nieuwe technieken en sensoren verandert een kabel van transportmiddel naar informatiebron. Zo kan een glasvezelkabel dienst doen als thermometer of deformaties doorgeven. Fugro ontwikkelde een systeem waarbij tot zestien sensoren via glasvezel verbonden kunnen worden met een optisch meetapparaat, een zogeheten interrogator. Op die manier kunnen voor lange tijd trillingen, hoekverdraaiingen (kanteling), buiging (microrek), geluid en druk worden gemeten, wat inzicht geeft in de levensduur van een constructie.
>> Lees artikel ‘Veilige constructies door slimme glasvezelsensoren’ (pdf, 1MB)

Parkeergarage Houtwal

Om in de binnenstad voldoende parkeergelegenheid te creëren zonder dat dit ten koste gaat van de leefbaarheid van het centrum, heeft de gemeente Harderwijk een nieuwe parkeergarage laten bouwen aan de Houtwal.

De garage is rond, heeft een diameter van 60 meter en biedt plaats aan 450 voertuigen. In het midden heeft hij een groot glazen dak, dat ervoor zorgt dat tot onderin – ruim 21 meter beneden het maaiveld – daglicht valt. De parkeerlagen hebben de vorm van een spiraal en liggen rond de lichtschacht die een doorsnede heeft van 12 meter. Op weg naar beneden komen bezoekers nergens een pilaar tegen. Voor het verlaten van de garage is een aparte rijbaan gemaakt rond de lichtschacht, die automobilisten zonder obstakels naar de uitgang voert.

Automobilisten rijden als in een kurkentrekker naar beneden. (Beeld: Gemeente Harderwijk)

Diepwanden

De garage is aanbesteed als design-and-constructcontract, en ontworpen en gebouwd door bouwcombinatie Houtwal. Voor de bouw zijn diepwanden gemaakt tot een diepte van 24,5 meter, waarbij elk paneel ongeveer 8 meter breed is en 1,2 meter dik. Een rubberen slab tussen de diepwanden zorgt voor een goede waterdichte afsluiting.

Nadat de ring van diepwanden gereed was, is het grootste deel van de grond hydraulisch ontgraven om overlast voor de omgeving door vrachtwagens te voorkomen. Het natte zand is opgezogen en via een persleiding naar een depot verpompt. De leidingen hiervoor zijn tijdelijk in het gemeentelijke riool aangebracht.

Tijdens graafwerkzaamheden zijn resten van een oude stadspoort ontdekt. Deze zijn gerestaureerd en staan tentoongesteld op de onderste verdieping van de parkeergarage.

Onderwaterbeton

De onderste vloer van de garage bestaat uit onderwaterbeton. Om opdrijven van deze vloer te voorkomen zijn ruim 400 GEWI-ankers aangebracht met een lengte van 34 meter. De paalpunten van deze ankers zitten 53 meter onder het maaiveld.

Voorafgaand aan het storten van het onderwaterbeton is een wapeningslaag van een meter dik aangebracht, die ervoor zorgt dat de vloer niet opbolt. Na uitharding van het onderwaterbeton bleek de aansluiting tussen de vloer en wanden nog niet volledig waterdicht. Daarom hebben duikers gaten door het beton geboord en met injectielansen een expanderende tweecomponentenhars geïnjecteerd tussen de vloer en de wanden. Toen de lekkage was verholpen, heeft de bouwcombinatie het water uit de bouwput gepompt en is begonnen met de afbouw.

Eerst is bovenop het onderwaterbeton een constructieve vloer gemaakt van 75 centimeter dik. Vervolgens zijn de middenkoker en de trappenhuizen gebouwd. Vanuit de trappenhuizen zijn de kolommen gesteld waarop de prefab betonnen parkeerdekken steunen. Het betreft acht betonnen kolommen voor de middenring en zestien voor de buitenring. Het niet-glazen deel van het dak bestaat uit ruim vijftig betonnen dakliggers met een gewicht van elk zestien ton. Het dak is voorzien van gras en het glas is beloopbaar om het gebied een parkachtige uitstraling te geven.

Sprinkler-installatie

De parkeergarage is voorzien van energiezuinige, dimbare led-verlichting. In totaal gaat het om 650 led-armaturen die vier standen hebben: 30, 25, 20 en 15 Watt. Verder is de garage uitgerust met een sprinklerinstallatie. Bij brand gaan de sprinklers nabij het vuur direct sproeien, zodat een brand geen kans heeft zich verder te ontwikkelen. Daardoor blijft de temperatuur bij een brand laag en blijft de bouwkundige constructie gespaard. Een ventilatiesysteem zorgt voor de afvoer van rook.

Overijssel: ondergrond vergroot je ruimte

Overijssel is een provincie met heel gevarieerde landschappen. Ook ondergronds is er veel veelzijdigheid. De provincie maakte een inspirerende folder over het scala aan mogelijkheden dat de ondergrond biedt.

Voor de folder is gekeken naar alle kwaliteiten en functies vanaf maaiveld tot in de diepe ondergrond; van aardkundige waarden tot en met zoutwinning. Naast functies als levering van grondstoffen vervult de ondergrond ook natuurlijke functies, zoals filtering en berging van grondwater. In totaal kunnen er wel zo’n dertig verschillende functies worden onderscheiden, die vaak ook interacties hebben.

Niet alle ondergrondse en bovengrondse functies zijn naast of boven elkaar mogelijk. Daarbij spelen het schaalniveau en de effecten van ingrepen in de ondergrond op de lange termijn ook een rol. Er moeten dan ook steeds vaker afwegingen worden gemaakt. Hiervoor vormt de provinciale omgevingsvisie, waar de Visie op de Ondergrond integraal onderdeel van is, de basis. De centrale ambitie is om balans te vinden tussen gebruik en bescherming van de ondergrond, waarbij soms ook herstel nodig is. Daarnaast wordt bij maatschappelijke opgaven gekeken naar de rol die de ondergrond daarbij kan spelen.

Bij het zoeken naar oplossingen en het maken van afwegingen wordt nadrukkelijk de relatie gelegd met de bovengrondse ontwikkelingen. Er wordt gewerkt vanuit een integrale en gebiedsgerichte aanpak. Dit betekent dat de ondergrond direct wordt meegenomen in gebiedsprocessen en dat de kansen en beperkingen van de ondergrond in beeld worden gebracht. De folder laat dit zien: in een dwarsdoorsnede van Overijssel zijn de projecten weergegven waarbij de ondergrond een bijdrage levert.

>> Lees het interview met Jaya Sicco Smit, die als beleidsontwikkelaar ondergrond van de provincie Overijssel betrokken was bij de realisatie van de folder

Pionieren met waterleidingen

Dunea heeft een nieuwe techniek ontwikkeld om distributieleidingen voor drinkwater goedkoper en met minder overlast voor bewoners te saneren. Door een stevige ballon op te blazen in de leiding, hoeft het water voor andere aansluitingen op dezelfde leiding niet te worden onderbroken. Zo kan een leiding in kleinere delen worden vervangen.

Op de IJsselkade in Leiden zijn Dunea-monteurs Peter van de Burg en Mario Kreber al vroeg bezig met de voorbereidingen. Er moet over een lengte van dertig meter een gietijzeren leiding worden vervangen. Nadat de waterleiding met een graafmachine is blootgelegd, wordt een gat in de oude distributieleiding geboord. Daarna brengen de monteurs via het gat een blaas (ballon) in de buis. De blaas wordt opgepompt en sluit de buis luchtdicht af. Vervolgens kan de oude buis worden verwijderd. Op de nieuwe leiding komt een speciale afsluitbare koppeling, waarop de volgende dag wordt voortgebouwd. Het is een nieuwe techniek waarmee Dunea nu ervaring opdoet.

“Geweldig. Je hoeft geen noodleidingen meer aan te leggen”, zegt Peter. “Bovendien zitten onze klanten minder lang zonder water. In plaats van een hele wijk af te sluiten, hoeven we alleen het water in de straat waar we de leiding vervangen tijdelijk af te sluiten.”

Geen noodleiding

Het idee ontstond binnen MOC-operationeel, de afdeling die nadenkt over materialen en methodieken. André Koning en Michel Helgers werkten het verder uit: “We wilden een manier bedenken om distributieleidingen te saneren zonder aanleg van noodleidingen. Een noodleiding leggen en weer weghalen, betekent veel graafwerkzaamheden, en het bedraagt al snel een derde van de totale saneringskosten. Bovendien wordt de noodleiding vaak maar één keer gebruikt en daarna weggegooid. Werken zonder noodleidingen is dus minder belastend voor het milieu.”

Per jaar vervangt Dunea vijfendertig kilometer aan leidingen in vele projecten. Peter: “We vervangen met de nieuwe methodiek gemiddeld dertig tot veertig meter op een dag. In de pilot testen we onder meer hoe de blaas zich houdt bij gietijzeren leidingen. De binnenkant van dit type leidingen is soms wat ruw. We testen of de blaas daartegen bestand is en niet beschadigt raakt of knapt. Tot nu toe is dat niet gebeurd. De eerste bevindingen zijn positief!”

Om half twaalf ’s ochtends is de dagproductie van de pilot al gehaald: dertig meter oude distributieleiding is vervangen door een nieuwe pvc buis met een diameter van honderdtien millimeter. Daarna kan de graafsleuf weer dichtgegooid worden met zand. De mannen nemen na gedane arbeid eerst even pauze in de schaftkeet met koffie en een paar flinke boterhammen met spek. André Koning vertelt dat ze de nieuwe techniek al een naam hebben gegeven: de HELKO-methodiek. “HEL is van Helgers en KO is van Koning”, legt Andre glimlachend uit.

Reacties

Het is goed mogelijk dat de techniek straks in het hele land navolging krijgt. Andere waterbedrijven kwamen al langs op de IJsselkade om te kijken hoe de techniek werkt. Een klantbelevingsonderzoek maakte ook onderdeel uit van de pilot. In de nabijgelegen Spaarnestraat vertelde een bewoner: “Het is gebruikelijk dat bij het vervangen van de leidingen de straat twee tot drie keer open gaat, maar bij ons was het binnen een dag gepiept. ’s Ochtends werd de straat opengebroken en toen ik ’s middags van mijn werk thuiskwam, lagen de stoeptegels er alweer in.”

Omdat het water tijdelijk wordt afgesloten en het een pilot is, stelt Dunea waterflessen beschikbaar voor de bewoners. De volgende ochtend wordt het water bemonsterd volgens de standaardprocedure. De bewoners krijgen het advies om de eerste vier dagen alleen water te drinken nadat het is gekookt. “Ik hoorde van mijn vrouw dat het water slechts kort is afgesloten”, aldus de bewoner. “Ze hielden ons netjes op de hoogte.”

Peter en André brengen de blaas in de buis. (Foto: Dunea)

Dit was de Onderbreking Kabels en leidingen

Bekijk een ander koffietafelboek: