Loading...

De Onderbreking

Leren in de praktijk

Leren in de praktijk

Als we dat hadden geweten

Barendrecht, Tweede Heinenoordtunnel

Visie van: Martin van Staveren

Werkbare oplossingen door integrale aanpak veiligheid

Zero Energy tunnel-onderzoek opmaat voor praktijkproef

Leren van project naar project

Den Haag Rotterdamsebaan

Utrecht: win-win-winsituatie

Zwemmen in een schuilkelder

Kennisbank

Leren in de praktijk

De kracht van een kennisgericht netwerk ligt in de mate waarin het in staat is om zowel het zoeken als het leren vorm te geven en te onderhouden. Het herkennen en erkennen van leeropgaven gaat altijd vooraf aan het verbeteren van de praktijk.

Professionals doen veel ervaring op, maar hebben tijd en aandacht nodig om lering te trekken uit die ervaringen. Anders jagen ze naar het volgende klusje of naar het volgende project. Succesvol verbeteren vraagt dat het individu (de professional) én de organisatie (het management) gericht zijn op het vangen van leermomenten.

Er is bij het COB steeds meer vraag naar veilige leergemeenschappen voor projectleren. Projectleren is een vaardigheid die je moet verwerven en die inspanning vraagt. Organisaties realiseren zich steeds meer dat het helpt om het leren stevig te instrumenteren en te ondersteunen. Dat kan heel goed op een project, in de praktijk met echte gebeurtenissen en ervaringen, en ook in beperkte tijd.

Als we dát hadden geweten...

In ondergrondse bouwprojecten zijn grote sprongen gemaakt op het gebied van monitoring. Om die nieuwe kennis bij volgende projecten te kunnen benutten, werken experts aan een rapport met best practices. “Met dit rapport willen we bestaande richtlijnen toetsen aan de praktijk. Wij geven op basis van onze recente ervaringen nog wat bijkomende tips”, aldus Hans Mortier, voorzitter van de COB-werkgroep.

Monitoren wil zeggen ‘in de gaten houden’. Bij bouwprojecten gaat het dan hoofdzakelijk om de omgeving: in hoeverre verandert die naar aanleiding van de bouwwerkzaamheden? Werkgroepvoorzitter Hans Mortier, afdelingshoofd Engineering bij Dimco (voorheen CFE): “Met monitoring meet je de impact van de bouw. Vooraf zijn er inschattingen gedaan voor de effecten die het bouwproject op de omgeving kan hebben, zoals deformaties van gebouwen en veranderingen in het grondwaterpeil. Monitoring is er enerzijds op gericht om te controleren of alles volgens plan verloopt. Anderzijds kun je monitoren om het bouwproces te sturen. Dat is het geval bij de Observational Method (zie kader).”

“Bij het inrichten van het monitoringsproces wordt nu nog te vaak het warm water opnieuw uitgevonden”, stelt Mortier. “Een ingenieur die start op een nieuw project, begint blanco aan zijn monitoringsplan, met alleen de bestaande richtlijnen als basis. Dat is zonde. We hebben dit zelf ondervonden bij het maken van het rapport. Als we sommige van elkaars bevindingen eerder hadden geweten, waren we in onze projecten echt anders te werk gegaan. Kennis over monitoring wordt nu alleen benut als toevallig de juiste persoon betrokken is bij het project.”

Universeel

De experts in de werkgroep komen uit drie projecten: A2 Maastricht, Spoorzone Delft en de Noord/ Zuidlijn. Alle drie binnenstedelijk, maar verder heel verschillend. Mortier: “In Amsterdam is de tunnel geboord en zijn de stations op grote diepte aangelegd, terwijl Delft meer ‘rechttoe rechtaan’ bouwt met de open bouwput- en wanden-dakmethoden. Maastricht is weer anders vanwege de afwijkende ondergrond en de toepassing van de Observational Method.” Toch zijn de ervaringen te combineren: “De monitoring draait om hetzelfde, namelijk het meten van de impact. We gebruiken dezelfde meettechnieken en dezelfde verwerkingsprocessen. In het rapport geven we bijvoorbeeld tips over het omgaan met grenswaarden; dat is een aspect dat je in elk project tegenkomt.”

De tunnel van A2 Maastricht in aanbouw, maart 2014. (Foto: Flickr/Etienne Muis)

Een andere universele tip gaat over de ‘zachte kant’ van monitoring. “Monitoring levert niet alleen informatie op voor de techneuten. Ook de buitenwereld, de omgeving van het project, vindt monitoring belangrijk. Maar hoe communiceer je over metingen? Als je te gedetailleerd bent, heb je kans dat niet iedereen het begrijpt en mensen misschien verkeerde conclusies trekken. Aan de andere kant is er tegenwoordig al zo veel informatie online te vinden, dat het averechts kan werken om terughoudend te zijn. In het rapport gaan we in op deze afwegingen.”

Mortier vervolgt: “Het gaat om transparant en eerlijk communiceren over meetwaarden. Dat geldt ook al in het voortraject. Precontractuele monitoring is altijd een heikel punt. Wat als de metingen niet kloppen? Ons advies is om de monitoring zo open mogelijk te bespreken. Wat is er gemeten, wat zijn de onzekerheden? Voor de risicoverdeling kunnen de partijen ook een frame rondom de meetwaarden afspreken. Zolang de echte waarde binnen een bepaalde marge valt, kan de opdrachtgever niets worden verweten.”

Nulmeting

Eén van de projecten waarvoor de best practices nuttig kunnen zijn, is Zuidasdok. Vorig jaar is dit grootschalige Amsterdamse infraproject op de markt gezet en zijn er bouwbedrijven geselecteerd voor de dialoogfase. De gunning staat gepland voor februari 2017. “Aangezien een van onze belangrijkste conclusies gaat over het hebben van een nulmeting, zien we graag dat het rapport door de geselecteerde bedrijven wordt gebruikt. Onze ervaring is dat een goede nulmeting een enorme meerwaarde geeft. Als je een tijd kunt monitoren vóórdat er gewerkt wordt, en je zo goed zicht krijgt op de ‘normale’ meetwaarden, dan kun je later tijdens het bouwen de meetwaarden veel beter interpreteren. Je kunt dan de ruis eruit filteren, zodat je alleen datgene overhoudt wat echt door het bouwproces veroorzaakt wordt. Helaas is zo’n nulmeting vaak maar beperkt aanwezig, doordat men te laat begint met meten. Voor Zuidasdok ligt er nu de kans om het beter te doen. Over een nulmeting zijn al eisen opgenomen in de aanbesteding. Ons rapport kan helpen bij de invulling van die eisen.”

Meer tips

  • Overdaad schaadt. Pas de hoeveelheid (frequentie) van de metingen aan op de verwerkingsmogelijkheden. Als de gegevens niet omgezet kunnen worden naar relevante informatie, dan hebben de metingen geen zin.
  • Laat de data interpreteren door ervaren mensen. Om te kunnen begrijpen wat er nou eigenlijk is gemeten en wat dat voor het project betekent, is bouwervaring nodig. Het is daarom niet verstandig om een beginnend werkvoorbereider alleen de gegevens te laten verwerken.

Barendrecht, Tweede Heinenoordtunnel

In september 1999 is de Tweede Heinenoordtunnel in gebruik genomen. Het is de eerste geboorde tunnel in Nederland. De tunnel is bestemd voor langzaam verkeer en heeft twee tunnelbuizen. Hij ligt naast de Heinenoordtunnel die dertig jaar eerder, in 1969, openging en gebouwd is volgens de zogeheten afzinkmethode.

(Foto: Flickr/Patrick Rasenberg)

Aanleiding

Jarenlang was een brug bij Barendrecht de enige vaste verbinding tussen de eilanden IJsselmonde en Hoekse Waard. Door het toenemende autoverkeer en meer scheepvaart op de Oude Maas – waardoor de brug vaker open moest – staan er in de jaren zestig steeds vaker files bij deze brug. Om deze files te voorkomen, wordt besloten om een tunnel aan te leggen, de Heinenoordtunnel.

Deze afzinktunnel heeft twee tunnelbuizen met elk drie rijstroken. In iedere tunnelbuis zijn twee stroken bestemd voor snelverkeer en een voor langzaam verkeer, zoals landbouwvoertuigen, fietsers en voetgangers. Bij de opening van de tunnel wordt ervan uitgegaan dat maximaal 30.000 voertuigen per dag gebruik maken van de tunnel. Eind jaren tachtig zijn dat er al bijna 60.000 per dag met als gevolg dagelijks forse files.

Om de filedruk te verminderen, wordt in 1991 de oostelijke tunnelbuis voor het autoverkeer richting Barendrecht en Rotterdam verbouwd, waarbij de rijstrook voor het langzame verkeer geschikt wordt gemaakt voor snelverkeer. Daardoor verdwijnen de files tijdens de ochtendspits. Het verkeer dat ‘s avonds naar het zuiden moet, staat echter nog steeds vast. Een oplossing voor dit probleem is de aanleg van een nieuwe tunnel voor het langzame verkeer naast de bestaande tunnel, zodat het snelverkeer ook in de westelijke tunnelbuis kan beschikken over drie rijstroken.

Proefproject

Na overleg met kennisinstellingen en aannemers besluit Rijkswaterstaat de Tweede Heinenoordtunnel aan te leggen als boortunnel. Er is in Nederland weliswaar nog geen ervaring met boortunnels, maar in landen als Japan en Duitsland is ondertussen aangetoond dat het mogelijk is om boortunnels aan te leggen in slappe grond. Bovendien lijkt de bouwtechniek kansrijk in ons dichtbevolkte land, bijvoorbeeld voor de aanleg van een nieuwe metrolijn in Amsterdam, waar de traditionele bouwmethode veel te veel overlast zou veroorzaken.

De bouw van de Tweede Heinenoordtunnel wordt gezien als een uitgelezen kans voor een proefproject. Niet alleen omdat de tunnel wordt gerealiseerd in een gebied zonder bebouwing, maar ook vanwege de relatief kleine diameter van het boorgat (8,3 meter). Daardoor is de aanleg van deze boortunnel relatief eenvoudig. Daarnaast is het aantrekkelijk dat er op de bouwlocatie ruimte en mogelijkheden zijn om praktijkexperimenten en metingen te doen. Zo worden er op een plek boven het boortracé funderingspalen inclusief allerlei meetapparatuur aangebracht om het effect van het boorproces op paalfunderingen te kunnen bepalen. Bovenop de palen worden volle containers geplaatst om gefundeerde huizen na te bootsen.

Bouw

In 1995 is de bouw van de nieuwe tunnel gestart met de aanleg van twee diepe bouwputten, één op de noordelijke en één op de zuidelijke oever van de Oude Maas. Hiervoor zijn combiwanden tot 27 meter diepte in de grond geheid. De bouwputten dienden als start- en ontvangstschacht voor de tunnelboormachine. Om te voorkomen dat de startschacht bij de start van het boorproces vol water zou lopen, is gewerkt met een zogeheten dichtblok. Dat is een waterdichte overgangsconstructie die bij de start van het boorproces wordt doorboord. Voor het maken van dit dichtblok is over de hele breedte van schacht een smalle bouwkuip gemaakt, die is volgestort met waterdicht lagesterktebeton.

Bouwput zuidzijde (Foto: beeldbank Rijkswaterstaat / Rens Jacobs)

De gebruikte tunnelboormachine was zestig meter lang. De boorkop – een holle stalen cilinder die tijdens het boren en bouwen van een tunnelbuis de grond ondersteunt, grondwater tegenhoudt en voorop een graafwiel heeft – had een diameter van ongeveer acht meter. Met deze machine is eerst een tunnelbuis van noord naar zuid aangelegd. Na aankomst in de ontvangstschacht op de zuidelijke oever is de tunnelboormachine voor een deel gedemonteerd en omgedraaid, zodat de tweede tunnelbuis van zuid naar noord kon worden geboord. Per etmaal bewoog de machine zich met ongeveer tien meter voort.

Om in de slappe grond onder de Oude Maas te kunnen boren, is gewerkt met de vloeistof- of slurryschildmethode. Hierbij wordt in de boorkop de ruimte achter het graafwiel gevuld met een water-bentonietmengsel en onder druk gezet. Door de druk van dit mengsel af te stemmen op de grond- en waterdruk kan er geen water en grond ongecontroleerd in de graafkamer stromen en blijft het boorfront stabiel. De losgeboorde grond valt in de boorkamer en vermengt daar met het water-bentonietmengsel. Vervolgens wordt deze slurry via buizen afgevoerd naar een scheidingslocatie, waar de bentoniet wordt teruggewonnen.

Het keren van het schild van de TBM en aanzicht 1e volgwagen in de schacht aan de zuidzijde. (Foto: beeldbank Rijkswaterstaat / Frans Marks)

Nadat de tunnelboormachine een paar meter heeft geboord, wordt in het achterste deel van de boorkop, het zogeheten staartschild, met gebogen betonnen segmenten een tunnelring gebouwd. Als dit is gebeurd, zet de boormachine zich met vijzels af op deze ring om het volgende stuk te boren. De tunnelbuizen van de Tweede Heinenoordtunnel bestaan elk uit ongeveer 10.000 segmenten. De buitendiameter van een tunnelbuis is iets kleiner dan de diameter van de boorkop. De ruimte tussen de buitenkant van de buis en het boorgat, de staartspleet genoemd, wordt opgevuld. Hiervoor wordt grout geïnjecteerd.

Geleerde lessen

Tijdens het boren van de Tweede Heinenoordtunnel zijn allerlei metingen gedaan. Zo zijn de waterspanningen voor het boorfront, de snijkrachten, de slijtage van de messen, de boorfrontdrukken en de druk waarmee het grout in de staartspleet werd geïnjecteerd, gemeten. Vooraf waren met modelberekeningen voorspellingen gedaan. Gedurende de bouw zijn de gemeten waarden vergeleken met de voorspellingen, wat tot veel nieuwe kennis heeft geleid. Door bijvoorbeeld de groutinjectiedruk en de zettingen aan maaiveld te meten, werd het verband tussen deze twee parameters duidelijker. Dat leidde al bij het boren van de tweede tunnelbuis ertoe dat de zettingen aanmerkelijk kleiner waren dan bij de eerste. De ‘palenproef’ (metingen aan de funderingspalen) heeft kennis opgeleverd die later is gebruikt bij het boren van de tunnels van de Noord/Zuidlijn.

Aangezien er nog weinig ervaring was met boren in slappe grond, ging er bij de bouw ook af en toe wat mis. Een belangrijk incident was een ‘blow out’ tijdens het boren van de eerste tunnelbuis: tussen het boorfront en de ruim acht meter hoger gelegen rivierbodem ontstond een open verbinding, waardoor de boorfrontdruk wegviel en het water-bentonietmengsel kon wegstromen. Dit leverde een forse vertraging op, maar bleek ook een uiterst leerzame gebeurtenis. Zo stelde het de betrokken onderzoekers in staat om de maximale boorfrontdruk nauwkeurig vast te stellen.

Gemeenschappelijk praktijkonderzoek

Na de aanvankelijke twijfels raakten alle betrokken partijen door het succesvolle praktijkonderzoek bij de Tweede Heinenoordtunnel ervan doordrongen dat boortunnels in de Nederlandse slappe bodem een geschikte optie waren. Tegelijkertijd werd duidelijk dat er nog veel meer kennis nodig was om de risico’s rond het boren van tunnels beter te kunnen inschatten en beheersen. Dit leidde in het jaar 2000 tot het besluit om de tunnelboortechniek verder te verbeteren aan de hand van nieuwe praktijkprojecten. Hiermee kwam een uniek samenwerkingsprogramma tot stand, het Gemeenschappelijk Praktijkonderzoek Boortunnels (GPB).

Binnen het GPB werkten overheden, aannemers en kennisinstellingen samen, waaronder ook het COB. Nadat een kennisagenda was vastgesteld, is goed gekeken welk project het meest geschikt was voor de beantwoording van een onderzoeksvraag. Verder is steeds geprobeerd om de onderzoeksuitkomsten van een project te gebruiken als input voor een volgend project. In de publicatie De toekomst is aangeboord zijn de resultaten van het GPB tot 2005 beschreven

Visie van: Martin van Staveren

Van Geo-Impuls richting Geo-Gedrag

““In 2009 is het vijfjarige programma Geo-Impuls gestart. Doel was om geotechnisch falen in bouw- en infraprojecten structureel terug te dringen, evenals de bijbehorende faalkosten en ander ongerief. Op het internationale ISGSR2015-congres in oktober na, is het programma zo goed als afgerond. Dus hoogste tijd voor een vooruitblik op de komende vijf jaar. Waar gaan we heen na Geo-Impuls?

Anno 2015 blijkt Geo-Impuls om meerdere redenen een succes. Georisicomanagement, letterlijk en figuurlijk een verdieping van projectrisicomanagement, is praktisch uitgewerkt en door de sector omarmd. Meer dan tweehonderd professionals uit ruim veertig organisaties hebben hun kennis, ervaring en krachten gebundeld, met als resultaat tal van praktische producten. Die zijn voor iedereen kosteloos toegankelijk via geoimpuls.org. Hoewel er vanaf het begin voor is gekozen om faalkostenreductie niet direct te meten – dit bleek geen haalbare kaart – is het aantal geotechnische incidenten in Cobouw in de periode 2010-2014 met vijfenzeventig procent gedaald. Dat is winst op het puntje imagoschade. En dan is er nog het Slotmanifest, dat op 23 april op de GeoTop 2015 is ondertekend.

Dit Slotmanifest verbindt het verleden met de toekomst. Hierin verklaren de Geo-Impulspartners namelijk dat georisicomanagement gewoon als onlosmakelijk onderdeel van projecten toegepast moet worden. Ook verklaren ze elkaar daar blijvend op aan te spreken. Hier ligt dus dé kans om de resultaten van Geo-Impuls als sector te verzilveren. Door het omzetten van woorden in daden, om te komen van goedbedoelde intenties tot de daadwerkelijke uitvoering.

Hierbij zullen we echt nog wel wat obstakels tegenkomen, ondergronds én bovengronds. Zo is elkaar aanspreken in opdrachtgever-opdrachtnemerrelaties niet altijd eenvoudig, zeker als partijen in de aanbestedingsfase zitten. Toch is helderheid over bijvoorbeeld de contractverantwoordelijkheid voor geotechnische risico’s juist dan essentieel, om er later in het project kosteneffectief mee om te kunnen gaan. Dit vergt flexibiliteit in bestaande kaders en wederzijdse overtuigingen. Een voor de hand liggende bestemming na Geo-Impuls is dan ook Geo-Gedrag, met de Bouwcampus als expeditieleider. Er gloort een mooie toekomst na Geo-Impuls!”

Martin van Staveren was adviseur van het Geo-Impulsprogramma. Hij is auteur van de praktijkgids Geotechniek in Beweging, adviseur risicomanagement bij bureau VSRM en kerndocent aan de masteropleidingen Risicomanagement en Public Management, Universiteit Twente.

(Foto: Vincent Basler)

Werkbare oplossingen door integrale aanpak veiligheid

Voor het Zuidasdok is een integraal veiligheidsplan ontwikkeld. Bij de totstandkoming zijn verschillende belangen en disciplines bij elkaar gebracht. Jasper Nieuwenhuizen, voorzitter van de werkgroep integrale veiligheid van de projectorganisatie Zuidasdok: “Het unieke is dat meerdere systemen integraal samenwerken. De veiligheidsplannen van drie opdrachtgevers komen hier bij elkaar. Er wordt niet naar ieder object afzonderlijk gekeken, maar naar het gebied als geheel.”

Jasper Nieuwenhuizen en Peter Bals, senior adviseur Proactie bij de Brandweer Amsterdam-Amstelland, waren al in de verkenningsfase bij het project betrokken en maken ook nu nog deel uit van de werkgroep Integrale Veiligheid, waarin naast de initiatiefnemers ProRailRijkswaterstaat en de gemeente Amsterdam ook de gebruikers zitting hebben (NSGVB, hulpdiensten en bevoegd gezag).

Jasper Nieuwenhuizen noemt de passagiersstromen bij het station als voorbeeld voor de integrale aanpak. “Het veiligheidsplan van de NS strekt zich uit tot de deur van het station. Dat van het gemeentelijk vervoersbedrijf (GVB) begint bij de halte. Beide zijn goed voor hun gebied, maar sluiten niet automatisch op elkaar aan. In het Integraal Veiligheidsplan (IVP) gaan we uit van voetgangersstromen in het hele gebied en dus niet per object of discipline.”

Op eenzelfde manier wordt naar een groot aantal veiligheidsaspecten gekeken, variërend van constructieve veiligheid tot sociale veiligheid en van tunnelveiligheid tot waterveiligheid (zie kader onderaan). Jasper Nieuwenhuizen: “We kijken in eerste aanleg naar het reduceren van gevaren. Op basis daarvan voeren we verbeteringen door. Dat leidt tot steeds robuustere plannen. Hierdoor zijn in de uitvoeringspraktijk waarschijnlijk minder wijzigingen nodig. Zo proberen we faalkosten te elimineren.”

Preventie in de planfase

Bij het reduceren van gevaren is de praktische inbreng van brandweer en hulpdiensten onmisbaar. Tegelijkertijd is het voor dergelijke organisaties zeker niet vanzelfsprekend dat zij zich mengen in de planfase van een project. Peter Bals: “Bij de brandweer hebben we net een strategische reis achter de rug die ertoe leidt dat we niet alleen ‘na de vlam’ willen kijken, maar ook ‘voor de vlam’. De kern van de brandweer is dat we in actie komen als het eigenlijk al te laat is. Dat wordt ook steeds duurder. Daar komt bij dat in het verleden in projecten vaak vertragingen ontstonden als gevolg van eisen van de brandweer. Door de brandweer heel vroeg in het proces te betrekken, kun je dat voorkomen.”

“Wij kunnen het abstracte denken van ontwerpers versterken vanuit onze concrete invalshoek”, vervolgt Bals. “Knelpunten kunnen we in de contracteringsfase oplossen. Zo kwamen we al vroeg tot de conclusie dat de bereikbaarheid voor brandweer en hulpdiensten tijdens de aanleg van de noordtunnel een groot knelpunt zou kunnen worden. Door het ontwerp en de fasering te optimaliseren is dit potentiële veiligheidsknelpunt in de voorfase al weggenomen Overigens zal de brandweer deze ‘stap naar voren’ ook in andere projecten gaan maken. We proberen deze werkwijze ook bij kleinere projecten in beeld te krijgen. Ideaal zou zijn als veiligheid al wordt meegewogen in de fase waarin een projectontwikkelaar een eerste voorstel aan de gemeente doet.”

Bestuurlijke consensus

De aanpak waarin zoveel disciplines in zo’n vroeg stadium bij het project zijn betrokken, is bijzonder. Al in 2009, toen vast kwam te staan dat de variant ‘Dok onder de grond’ gefaseerd zou worden uitgevoerd, werd tot de integrale aanpak besloten. In een bestuursovereenkomst, getekend door het ministerie van Infrastructuur en Milieu, de gemeente Amsterdam, de stadsregio Amsterdamen de provincie Noord-Holland, werd vastgelegd dat alle betrokken partijen gezamenlijk aan een integraal veiligheidsplan zouden werken. Jasper Nieuwenhuizen: “Voorheen is wel geëxperimenteerd met een Veiligheidseffectrapportage, maar dat is nooit goed van de grond gekomen. Deze aanpak voldoet wel aan de verwachtingen.”

Impressie dwarsdoorsnede van mogelijke eindsituatie voor A10 en spoor (trein en metro). Ook is de huidige A10 weergegeven. Dit wordt in de eindsituatie openbare ruimte. (Beeld: Projectorganisatie Zuidasdok)

Voorkomen dat het misgaat

Aanleiding voor het IVP was onder meer het rapport Sneller en beter van de commissie Elverding. Deze commissie onderzocht in 2008 waar het misgaat in de besluitvorming over infrastructuurprojecten en kwam met aanbevelingen om tot snellere en betere uitvoering van grote infrastructurele projecten te komen. De aanbeveling van de commissie Elverding om de besluitvorming te verbeteren door ‘een strakke procesbeheersing en kwaliteitsbewaking in alle fasen, onder meer door middel van een procesplan bij het begin van elke fase’, werd in Amsterdam opgepakt.

De belangen zijn dan ook groot. Zuidasdok is een enorm project, dat zich over een groot aantal jaren uitstrekt en in allerlei opzichten een enorme impact op de omgeving zal hebben. Jasper Nieuwenhuizen: “Het is een heel belangrijk gebied in Nederland, dat je niet zomaar ‘dicht’ kunt doen. Werken met de winkel open vergt extra voorbereidingen. Integraal kijken draagt bij aan het op een zo hoog mogelijk niveau bewaken van de kwaliteit.”

Definitie veiligheidsthema’s

Veiligheidsthema

Definitie

Arbeidsveiligheid

De veiligheid van personen die beroepshalve aanwezig zijn. In het kader van het IVP ligt de scope op bouwactiviteiten.

Bouwveiligheid

Veiligheid van werknemers en omstanders bij een bouwplaats (arbeidsveiligheid en omgevingsveiligheid bouw gecombineerd).

Brandveiligheid

Veiligheid van personen met betrekking tot brand en de gevolgen van brand voor een constructie.

Constructieve veiligheid

De veiligheid van personen met betrekking tot het bezwijken van of het ontstaan van schade aan een constructie.

Externe veiligheid transport

De kans om te overlijden als rechtstreeks gevolg van een voorval bij het transport van een gevaarlijke stof (via weg, water, spoor en/of leiding).

Fysieke veiligheid

Fysieke veiligheid is het gevrijwaard zijn (en het gevrijwaard voelen) van gevaar dat voortvloeit uit ongevallen van natuurlijke en gebouwde omgeving. Dit gevaar bedreigt materiële en immateriële zaken die de maatschappij waardevol acht, zoals leven en gezondheid van mens en dier, goederen, het milieu en het ongestoord functioneren van de maatschappij [NIFV].

Integrale veiligheid

Alle veiligheidsaspecten van een systeem in samenhang beschouwd.

Machineveiligheid

De veiligheid voor gebruikers en onderhouds- en bedienend personeel van machines.

Omgevingsveiligheid bouw

De veiligheid van personen, niet zijnde werknemers, in de omgeving van bouwwerkzaamheden.

Overige interne fysieke veiligheid

Interne fysieke veiligheid omvat alle veiligheidsthema’s van interne veiligheid, uitgezonderd sociale veiligheid. Toch blijven er enkele onderwerpen over:veiligheid bij ontruimingen zonder brand en veiligheid bij grote drukte (crowding).

Security

De bescherming of beveiliging van inrichtingen, personen en infrastructuur tegen moedwillige verstoringen.

Systeemveiligheid

De veiligheid van degenen die aanwezig zijn in het systeem (railverkeer, wegverkeer, vaarwegverkeer, etc.), zoals reizigers, personeel en overige aanwezigen in de nabijheid van het systeem.

Transferveiligheid

Veiligheid van de passanten en gebruikers die zich verplaatsen binnen de transferruimte van de Openbaar Vervoer Terminal OVT. Transferveiligheid valt binnen dit IVP uiteen in onderdelen van andere veiligheidsthema’s (onder meer brandveiligheid in de OVT, spoorwegveiligheid ter plaatse van perrons, veiligheid bij grote drukte, verkeersveiligheid binnen de OVT) en wordt niet separaat beschouwd.

Sociale veiligheid

De mate waarin mensen beschermd zijn en zich beschermd voelen tegen persoonlijk leed door misdrijven (criminaliteit), overtredingen en overlast door andere mensen.

Spoorwegveiligheid

Veiligheid op en rondom het spoorwegnet in Nederland, zowel van treinreizigers en passanten (wegen langs het spoor, spoorwegkruisingen) als werkers aan het spoor. De metro wordt beschouwd bij het thema spoorwegveiligheid.

Tunnelveiligheid

Veiligheid van personen in omsloten verkeersconstructies.

Waterveiligheid

Veiligheid van personen of objecten met betrekking tot hoog-water (ook als gevolg van het binnendringen in ruimten onder maaiveld).

Wegverkeersveiligheid

Veiligheid van verkeersdeelnemers, als gevolg van deelname aan het wegverkeer. Het openbaar vervoer bestaande uit bussen en trams wordt ondergebracht bij het thema wegverkeersveiligheid.

 

Zero Energy tunnel-onderzoek opmaat voor praktijkproef

Energieneutrale tunnels zijn mogelijk. Niet alleen in nieuwbouw, ook bij renovatie. Dat blijkt uit het onderzoek Zero Energy Tunnel: renewable Energy Generation and Reduction of Energy Consumption van Rimma Dzuhusupova aan de Technische Universiteit Eindhoven.

Een combinatie van bewezen technieken op het gebied van energiebesparing, toepassing van ter plaatse duurzaam opgewekte energie en ventilatiesystemen die de luchtkwaliteit binnen en buiten tunnels verbeteren, kan nu al een energieneutrale tunnel opleveren. Niets staat volgens promovenda Rimma Dzuhusupova (TU Eindhoven) en KIEN-directeur Adrie van Duijne een praktijktoepassing nog in de weg.

De conclusie dat een energieneutrale tunnel haalbaar is met bestaande, bewezen technologie, kan voor opdrachtgevers een eyeopener zijn, denkt Rimma Dzuhusupova.

“Opdrachtgevers zijn vaak niet geïnteresseerd in het investeren in energiebesparende maatregelen, in de veronderstelling dat het niet rendabel is. Met mijn eenjarig onderzoek heb ik aangetoond dat het mogelijk is om met behulp van bewezen technologie een energieneutrale tunnel te bouwen die past binnen de rendementseisen; een terugverdientijd van maximaal 25 jaar.”

“Verder onderzoek moet overigens nog wel duidelijk maken welke techniek je in welke situatie moet toepassen. In een praktijksituatie waar de omstandigheden bekend zijn en je niet hoeft te rekenen op basis van een virtuele standaardtunnel, kun je preciezer rekenen. Er is nog veel te onderzoeken. Ik hoop dat anderen dit onderwerp oppakken en er verder mee willen gaan.”

Adrie van Duijne, directeur van het Knooppunt Innovatie Elektrotechniek Nederland (Stichting KIEN): “KIEN wil verder met dit onderzoek. Alle grote installatiebedrijven zien het belang ervan. De volgende stap is een pilottunnel. De contacten daarvoor zijn gelegd. Rijkswaterstaat heeft zich in ieder geval al zeer betrokken getoond. Daar ziet men met name de luchtkwaliteit als een groot probleem. Na de zomer willen we met opdrachtgevers, waaronder ook gemeenten, en de installatiewereld een werkgroep vormen die zo’n praktijkproject mogelijk moet maken. Doel is een productconcept te ontwikkelen waar we als BV Nederland ook exportkansen mee creëren. We zien de grootste problemen in bestaande tunnels en verwachten dan ook dat de grootste kansen in renovatieprojecten liggen.”

Tunnelinstallaties

Rimma Dzuhusupova onderscheidt in haar onderzoek verschillende systemen die van invloed zijn op het totale energieverbruik van een tunnel. Naast grootverbruikers verlichting en ventilatie zijn dat pompen, verkeersinstallaties, brandbestrijdings-systemen, communicatiemiddelen, energiesubsystemen en gebouwgebonden installaties (o.a. verwarming en koeling kantoren).

Gemiddelde Nederlandse tunnel

Met behulp van Rijkswaterstaat en Croon Elektrotechniek heeft Rimma Dzuhusupova voor haar berekeningen een virtuele tunnel gedefinieerd met twee tunnelbuizen met een lengte van een kilometer, die tijdens de spits 5.000 voertuigen per uur te verwerken krijgt. Doel was om die tunnel zo te ontwerpen en in te richten dat deze het milieu niet belast en aantoonbare voordelen biedt voor opdrachtgevers. Er is ook gekeken naar de nieuwe Tunnelstandaard. “Rijkswaterstaat was een van de participanten in het onderzoek en heeft mij gedurende de totstandkoming van de Tunnelstandaard al inzicht gegeven in onderliggende documenten, zodat ik daar rekening mee kon houden”, aldus Rimma Dzuhusupova. Of het ontwerp daadwerkelijk binnen de standaard past, moet ook blijken uit de pilot.

Energiereductie

Tunnels hebben een veel groter geïnstalleerd vermogen dan dat er daadwerkelijk wordt gebruikt. Dat surplus zit grotendeels in de voorzieningen voor de ventilatievoorzieningen die alleen bij calamiteiten volledig worden ingezet. Kijkend naar het gemiddelde van de data van de DrechttunnelHeinenoordtunnelBeneluxtunnel en Coentunnel, komt Dzuhusupova tot de conclusie dat 53% van de daadwerkelijke energieconsumptie in tunnels voor verlichting wordt gebruikt. Toepassing van led-verlichting verlaagt de totale energieconsumptie van een tunnel met 12%, met een redelijke terugverdientijd. Op basis van door Croon Elektrotechniek ter beschikking gestelde data blijkt dat een gemiddelde tunnel 6,6 MWh/km per jaar verbruikt.

Het jaarlijks verbruik van een tunnel met gangbare verlichting en ventilatie (links) en van een tunnel met o.a. LED-verlichting en ventilatie ter bevordering van de luchtdoorstroom (rechts).

Het jaarlijks verbruik van een gangbare tunnel (rechts) en van een tunnel met energiezuinige installaties en eigen windturbines om energie op te wekken (links).

Naast beperking van energieverbruik en CO2-uitstoot betekent toepassing van led-verlichting ook dat de beschikbaarheid van de tunnel toeneemt als gevolg van een lagere onderhoudsinterval. Bovendien kan de intensiteit van led-verlichting gemakkelijker worden aangepast aan weersomstandigheden, het lichtniveau buiten de tunnel en de verkeersintensiteit. In Nederland is led-verlichting overigens al toegepast in onder andere de Vlaketunnel en de Heinenoordtunnel.

Luchtkwaliteit

Onderzoek naar beperking van energieverbruik voor ventilatiedoeleinden heeft Dzuhusupova gekoppeld aan de mogelijkheden om de luchtkwaliteit buiten de tunnel te verbeteren. Tot heden is alleen bij de Coentunnel een ventilatiesysteem geïnstalleerd met 25 meter hoge emissieschachten, dat voorkomt dat emissiewaarden direct buiten de tunnel te hoog oplopen. Rimma Dzuhusupova: “De daarvoor benodigde energie bedraagt veertig procent van het totale energieverbruik in de tunnel. Ik heb onderzoek gedaan naar systemen met filters, zoals die in onder andere Oostenrijk, Japan en Noorwegen al zijn toegepast. Mechanische filters en koolfilters zijn vanuit energieoogpunt de beste oplossing, maar vergen veel onderhoud. Een combinatie met elektrostatisch filter of koudeplasmatechnologie kan, afhankelijk van de situatie, tot optimalisatie leiden. Verder kan luchtreiniging gecombineerd worden met warmtecirculatie, waardoor de door voertuigen in de tunnel opgewekte warmte kan worden gewonnen voor hergebruik.”

Energieopwekking

Na optimalisatie van de bestaande systemen is er nog geen sprake van een volledig energieneutrale (zero energy) tunnel. Daarvoor is opwekking van hernieuwbare energie nodig. In de modeltunnel die voor de berekeningen is gebruikt, zou sprake moeten zijn van 1.000 m2 photovoltaïsche cellen (zonnepanelen) en twee windturbines met een vermogen van 0,5 MW. Dzuhusupova stelt in het onderzoek: “De introductie van hernieuwbare energiebronnen is technisch gezien een uitdaging. We kunnen echter concluderen dat met het voorgestelde nieuwe ontwerp het beoogde doel wordt bereikt: reductie van energiegebruik, verbetering van de luchtkwaliteit binnen en buiten de tunnel en opwekking van hernieuwbare energie om de tunnel daadwerkelijk energieneutraal te maken.”

‘Meningen worden zo weer eens ter discussie gesteld’

William van Niekerk

Directeur Corporate Social Responsibility bij de Koninklijke BAM Groep
Ambassadeur Tunnels en Bouwputten bij het COB

“Goed dat in een tijd waarin duurzaamheid steeds belangrijker wordt, dit soort onderzoeken plaatsvinden, waarin wordt gekeken of met de laatste stand van de techniek energieneutrale objecten zoals tunnels haalbaar zijn voor marktpartijen. Met een contractvorm waarbij de aannemer niet alleen de tunnel bouwt, maar ook voor langere tijd verantwoordelijk is voor het beheer en de energieconsumptie van een object, kan een kostenoptimalisatie over een groot gedeelte van de levenscyclus plaatsvinden en worden dit soort toepassingen haalbaar. Meningen gevormd op basis van verouderde technieken worden zo weer eens ter discussie gesteld en dit kan tot verrassende inzichten leiden.

Door het betrekken van zowel opdrachtgevers als bouwbedrijven in het onderzoek kan er een reëel beeld van de te verwachten besparingen worden verkregen. Het integreren van de energievoorziening van infra-objecten in smart grids en aansluiting zoeken bij initiatieven zoals die van het Smart Energy Collective kan misschien nog meer mogelijkheden bieden tot het beperken van energieconsumptie.”

Leren van project naar project

Twee parkeergarages, gebouwd door dezelfde combinatie, direct na elkaar in dezelfde stad. Dat klinkt als een ideale situatie om lessen uit het eerste project meteen toe te passen in het tweede. In de praktijk zit de belangrijkste winst in het feit dat de hele projectorganisatie met ervaring en al doorschuift naar het volgende project. Werner Vits, senior projectmanager engineering bij BESIX, en ontwerpmanager Marjorie Greveling van Dura Vermeer Beton- en Waterbouw, belichten de voordelen in het ontwerpproces.

De Combinatie Parkeergarages Leiden Dura Vermeer-BESIX realiseert in een DBM-contract twee parkeergarages in de binnenstad van Leiden. De cilindervormige parkeergarage aan de Lammermarkt, circa 22 meter diep, met 525 parkeerplaatsen over zeven lagen, is inmiddels zo goed als afgerond. De opening staat gepland in het voorjaar van 2017. De bouw van de ovaalvormige parkeergarage aan de Garenmarkt, met 425 parkeerplaatsen over vijf lagen, start maart 2017. Na realisatie is de Combinatie verantwoordelijk voor vijftien jaar onderhoud.

De parkeergarages zijn separaat aanbesteed. Desondanks bracht het volgtijdelijk uitvoeren van de twee parkeergarages voordelen met zich mee. De technische- en ontwerpvoordelen waren door de verschillen in het ontwerp beperkt. Marjorie Greveling: “We zijn vanuit het vertrekpunt gestart dat het twee vergelijkbare bouwwerken waren, waarvan één met een bouwlaag minder. Maar op de Garenmarkt was de ruimte te smal om eenzelfde garage neer te zetten. Dat pad hebben we dus moeten verlaten. Het is een compleet ander ontwerp geworden. De Parkeergarage Garenmarkt bestaat uit twee halve cirkels met een kleinere diameter dan de Lammermarkt en een recht deel ertussen.” Werner Vits voegt toe: “We kunnen wel gebruikmaken van dezelfde technieken, maar in de uitwerking is de Garenmarkt echt anders. We kunnen niet kopiëren, maar wel ervaringen van de eerste garage meenemen. Als het echt over techniek gaat, zie je dat mensen vlaggetjes planten. Op basis van ervaringen geven zij aan waar extra op gelet moet worden.”

Proefondervindelijk

Leerpunten zijn tijdens het proces benoemd en opgepakt. Het is een proefondervindelijk proces van ervaringen delen. “Onze bedrijven zijn niet toegerust voor structureel leren. Het werk is praktisch van aard, en zo is ook het leren georganiseerd. De gedachte is dat elk project anders is. Het is moeilijk om dat te veranderen”, zegt Werner. Marjorie constateert dat BESIX en Dura Vermeer daarin geen uitzonderingen zijn. “Je ziet deze werkwijze in de hele civiele wereld. Maar dat betekent niet dat we geen stappen maken. Je ziet bijvoorbeeld dat we van project naar project meer met BIM werken. Bij mijn eerste parkeergarage in Harderwijk werd alleen het betondeel in 3D uitgewerkt. Bij de Lammermarkt gold dat ook al voor de bouwkundige afwerking en installaties. En bij de Garenmarkt gaan we nog weer een stap verder door het model ook te koppelen aan de planning. Dat proces gaat sneller doordat we in Leiden met dezelfde partners kunnen werken. We weten dat onze partners het kunstje ook beheersen. Met een nieuwe installateur hadden we deze volgende stap nog niet durven nemen.”

Ervaring meenemen

De groep mensen die de tweede parkeergarage gaat bouwen, is grotendeels gelijk aan die van de eerste. Dat blijkt een groot voordeel. Mensen zijn op elkaar ingespeeld en hebben gedeelde ervaringen. Marjorie: “Voorafgaand aan de ontwerpfase en bij het uitwerken van elke nieuwe stap, organiseren we steeds een sessie met alle betrokkenen. Daar pakken we de ervaringen van de eerste keer mee. Verder kennen we de opdrachtgever en de toetser. We weten waar zij veel belang aan hechten en wat de risico’s zijn. Op basis van die ervaring kunnen we onze keuzes ook veel gemakkelijker onderbouwen, waardoor ideeën eerder worden geaccepteerd en er in het ontwerpproces minder slagen nodig zijn. Dat is belangrijk, omdat alles waarover je pas tijdens de bouw overeenstemming bereikt, extra risico betekent op hogere kosten, procesverstoring en vertraging. Daar hebben we nu geen last van, omdat we kunnen anticiperen en omdat de opdrachtgever ook ervaring heeft met hoe het werkt.”

Technische leerpunten

Ondanks de verschillen in ontwerp hebben de ervaringen met de Lammermarkt wel degelijk geleid tot wezenlijke aanpassingen van het ontwerp voor de tweede garage. Werner Vits: “Bij de Lammermarkt hebben we bijvoorbeeld gewerkt met een geïntegreerde poer. Achteraf gezien was dat een dure, arbeidsintensieve oplossing, zodat we voor de Garenmarkt een andere oplossing hebben gekozen. Dat kon ook, omdat deze minder diep wordt als de Lammermarkt. Verder hebben we het ontwerp kunnen optimaliseren waar we vooraf extreem voorzichtig waren. Op basis van monitoring bij de eerste garage durven we nu bijvoorbeeld meer krachten op te nemen in de constructievloer. Daarmee kunnen we de aansluiting van de vloer op de diepwand optimaliseren, hebben we minder risico’s en kunnen we kortere diepwanden gebruiken.”

Soms betekenden de ontwerpverschillen echter dat slimme oplossingen juist niet konden worden gekopieerd naar het tweede project. Marjorie: “Bij de Garenmarkt hebben we nog minder ruimte dan bij de Lammermarkt. Omdat we de rechte delen van de garage aan de Garenmarkt moeten stempelen, kunnen we daar niet, zoals bij de cilindervormige Lammermarkt, een ponton heen en weer laten gaan en moeten we de rechte delen vanaf een platform ontgraven. Dat is economisch gezien een minder interessante oplossing.”

Rotterdamsebaan

De gemeente Den Haag werkt aan een nieuwe verbindingsweg tussen knooppunt Ypenburg (A4/A13) en de Centrumring: de Rotterdamsebaan. Deze weg wordt 3,8 kilometer lang en doorkruist het grondgebied van de gemeenten Leidschendam-Voorburg, Rijswijk en Den Haag. Onderdeel is een geboorde tunnel, de Victory Boogie Woogietunnel, die tweemaal twee rijstroken krijgt en ongeveer 1.860 meter lang wordt.

De Utrechtsebaan is de belangrijkste toegangsweg van Den Haag. Van het verkeer dat de stad dagelijks in- en uitgaat, rijdt veertig procent via deze weg. Dat leidt elke dag tot files die zich vaak uitbreiden naar de omringende snelwegen zoals de A12, A13 en A4. De aangrenzende woonwijken hebben veel last van sluipverkeer. De nieuwe Rotterdamsebaan zorgt ervoor dat de druk op de Utrechtsebaan afneemt en het verkeer zich beter verdeelt. Met de nieuwe weg krijgt het verkeer van en naar Rotterdam, Delft en Ypenburg een alternatief.

Tracé

De Rotterdamsebaan loopt van het knooppunt Ypenburg richting het noorden, kruist met een tunnel het groene gebied de Vlietzone, het water de Vliet en de woonwijk Voorburg-West en komt uit op de Binckhorstlaan. Daar sluit de nieuwe weg bij de Neherkade direct aan op de Centrumring. Het tracé komt grotendeels overeen met de ligging van de tweede toegangsweg die architect Dudok – die na de Tweede Wereldoorlog de leiding had over de wederopbouw van Den Haag – in zijn plannen had opgenomen. De inpassing van de nieuwe verbindingsweg was een complexe opgave. Uiteindelijk heeft de inspraakprocedure ertoe geleid dat het ondergrondse deel van het tracé driehonderd meter langer wordt dan technisch gezien noodzakelijk is. Met de verlenging is de gemeente tegemoetgekomen aan bezwaren van omwonenden en andere belanghebbenden.

Artist impression van de skyline vanuit de Vlietzone. Op het dak van de tunnel zijn de geplande zonnepanelen te zien. (Beeld: Rotterdamsebaan)

Victory Boogie Woogietunnel

De tunnel, die Victory Boogie Woogietunnel gaat heten, wordt geboord. Hiervoor maakt de aannemerscombinatie (zie rechts) gebruik van de tunnelboormachine waarmee eerder de Sluiskiltunnel is aangelegd. De tunnel wordt 1.860 meter lang, waarbij het geboorde deel een lengte heeft van circa 1.640 meter. De twee tunnelbuizen komen op ongeveer vier meter van elkaar te liggen, krijgen een diameter van ruim tien meter en liggen op het diepste punt 29 meter onder de grond. In iedere buis komen twee rijstroken en tussen de buizen komt om de 250 meter een dwarsverbinding.

Duurzame infrastructuur

De Rotterdamsebaan moet hét voorbeeld van duurzame infrastructuur in Nederland worden. De Combinatie Rotterdamsebaan heeft in het ontwerp veel aandacht besteed aan de verschillende duurzaamheidsaspecten, zoals vormgeving en inpassing in het landschap, luchtkwaliteit en energiegebruik. Een goed voorbeeld is de tunnelmond in de Vlietzone. Hier komt over het dienstgebouw en de tunnelmond een grote overkapping die bestaat uit zonnepanelen. De elektriciteit die hiermee wordt opgewekt, zal worden gebruikt in het dienstgebouw. Een ander voorbeeld is het fine dust reduction system, een systeem waarmee vijftig procent van het fijnstof bij de tunnelmonden wordt afgevangen.

Planning

In 2014 is de gemeente gestart met het bouwrijp maken van het tracé en in 2015 is een aantal wegen in de Binckhorst opnieuw ingericht. Eind 2015 is de aanbesteding afgerond en is de opdracht, in de vorm van een design-, built- en maintenancecontract met vijftien jaar onderhoud, gegund aan de Combinatie Rotterdamsebaan. In 2016 heeft de gemeente de laatste voorbereidende werkzaamheden afgerond, waarna de aannemerscombinatie van start kon met het inrichten van de werkterreinen in de Vlietzone, de Binckhorst en het knooppunt Ypenburg.

Het boren van de Victory Boogie Woogietunnel startte half januari 2018. Vanuit de startschacht op het werkterrein in de Vlietzone graaft tunnelboormachine Catharina-Amalia haar weg naar de Binckhorst. Naar verwachting komt ze daar in juni 2018 aan. Vervolgens wordt de machine gedemonteerd en teruggebracht naar de Vlietzone. Nadat de machine weer is opgebouwd, start het boren van de tweede tunnelbuis. De opening van de Rotterdamsebaan staat gepland voor 1 juli 2020.

Voorbereiding

Om onder de grond alvast ruimte te maken voor de tunnel van de Rotterdamsebaan, moesten grote stroomkabels verlegd worden. De gemeente Den Haag maakte een video over deze indrukwekkende klus. Over een afstand van liefst een kilometer werd tot vijfendertig meter diep onder de grond een gestuurde boring uitgevoerd.

Win-win-winsituatie

Door een strategische keuze te maken voor grondwaterwinlocaties, pakt de provincie niet alleen de drinkwateropgave aan, maar verruimt ze ook de mogelijkheden voor warmte-koudeopslag (WKO) en ander ondergronds ruimtegebruik in stedelijk gebied.

“In de provincie Utrecht hebben we ongeveer dertig locaties waar grondwater wordt gewonnen voor de drinkwaterproductie”, vertelt René van Elswijk, programmamanager Grondwater bij de provincie Utrecht. “De productiecapaciteit van deze winlocaties is niet groot genoeg om in de verwachte drinkwatervraag van 2040 te voorzien. Daarom hebben we in kaart gebracht waar we binnen de provincie geschikte grondwatervoorraden hebben. Dat bleek op veel plaatsen het geval te zijn. Vervolgens hebben we bekeken welke gebieden het meest geschikt zijn voor nieuwe winningen. Daarbij hebben we niet alleen gekeken naar de invloed van de grondwateronttrekking op de omgeving, maar ook naar de invloed van de omgeving op een eventuele winlocatie.”

Er is gekozen voor locaties buiten (toekomstig) stedelijke gebied, waar winning uit diepere lagen – het tweede of derde watervoerende pakket – kan plaatsvinden. Ook drinkwaterbedrijf Vitens gaf aan dat zij vanwege mogelijke bedreigingen en belemmeringen in stedelijk gebied daar geen nieuwe winningen wil starten. Van Elswijk: “De keuze voor de diepere lagen hebben we gemaakt, omdat de grondwateronttrekking dan minder effect heeft op natuur en bestaande bebouwing. We willen geen verdroging en ook niet dat door een eventuele grondwaterverlaging paalrot aan houten funderingspalen gaat optreden. Onze keuze voor winlocaties buiten de stedelijke gebieden vloeit daarnaast voort uit de behoefte om zo veel mogelijk kansen te bieden voor WKO. Immers juist in binnenstedelijk gebied en op toekomstige ontwikkellocaties zijn dit soort bodemenergiesystemen een geschikte optie om aan milieu-eisen te voldoen.”

Kaart met de strategische grondwatervoorraad zoals opgenomen in de kadernota Ondergrond. (Beeld: provincie Utrecht)

Mogelijkheden verruimd

Collega Marian van Asten van het team Bodem en Milieu vervolgt: “Door het benoemen van de strategische grondwatervoorraden is nu ook duidelijk welke gebieden niet in aanmerking komen voor drinkwaterwinning. In deze gebieden hebben we de mogelijkheden voor WKO verruimd. Zo is WKO hier voortaan in alle watervoerende pakketten toegestaan, terwijl we voorheen een sterke voorkeur hadden voor het ondiepe pakket. Bijkomend voordeel van het toestaan van WKO in de diepere pakketten, is dat er minder snel conflicten ontstaan met ander ondergronds gebruik van het ondiepe watervoerende pakket, zoals parkeerkelders. Vooral in gebieden waar veel WKO-systemen zijn of worden verwacht is de verruiming aantrekkelijk. Een goed voorbeeld is de Utrechtse Uithof. Hier kunnen kleine WKO-systemen gebruik maken van het eerste watervoerende pakket en nieuwe, grote systemen van het tweede. Op die manier wordt voorkomen dat nabijgelegen WKO-systemen elkaar negatief beïnvloeden.”

Planologische bescherming

“De geschikte gebieden voor nieuwe drinkwaterwinningen hebben we in onze Kadernota Ondergrond benoemd tot strategische grondwatervoorraden”, legt Van Asten. “Deze gebieden geven wij een planologische bescherming. Dat betekent dat we hier ruimtelijke ontwikkelingen uitsluiten die een toekomstige drinkwaterwinning belemmeren. Aangezien de effecten van WKO in het eerste watervoerende pakket op de onderliggende watervoerende pakketten miniem zijn, staan we ondiepe WKO-systemen wel toe. Bijkomende reden is dat we het ongewenst vinden als in deze gebieden helemaal geen WKO mogelijk zou zijn. In de gebieden rond de bestaande drinkwaterwinlocaties is WKO in principe niet toegestaan.”

Schematische dwarsdoorsnede met de functies in de ondergrond. (Beeld: provincie Utrecht)

Zwemmen in een schuilkelder

De Finse hoofdstad Helsinki beschikt sinds 2010 over een integraal ondergronds masterplan. Het plan brengt de bestaande ondergrondse toepassingen in kaart en voorziet in reserveringen voor toekomstig gebruik. Volgens Ilkka Vähäaho, hoofd van de geotechnische divisie van Helsinki en voorzitter van de Finse tunnelassociatie, is het plan een onmisbaar hulpmiddel voor duurzame ontwikkeling van de stad en zijn ondergrond.

Vähäaho: “Het masterplan voor de ondergrond is bijvoorbeeld het fundament voor de bijdrage van de ondergrond aan een duurzaam en esthetisch acceptabel landschap en behoud van ontwikkelmogelijkheden voor toekomstige generaties. Zo speelt het masterplan een belangrijke rol in de ruimtelijke ordening.”

Het ondergrondse masterplan voor Helsinki brengt zowel de bestaande als toekomstige ondergrondse ruimten, tunnels en vitale ondergrondse onderlinge verbindingen in kaart. In het plan zijn reserveringen opgenomen voor nu nog onbekende toekomstige ondergrondse toepassingen. Op basis van uitgebreid geologisch onderzoek is bepaald welke plekken in de ondergrond geschikt zijn. Daarbij is vooral gekeken welke nog niet benutte ondergrondse capaciteit in de toekomst een bijdrage kan leveren aan het verminderen van de druk op het stadscentrum. Anders dan in Nederland, waar de meeste ondergrondse bouwwerken ‘stand-alone’ zijn, ontwikkelt de ondergrond van Helsinki zich door het verbinden van bestaande en nieuwe ondergrondse toepassingen steeds meer tot een aaneengesloten ondergrondse stad.

De integrale aanpak biedt extra voordelen boven op die van het sec ondergronds gaan. Er is sprake van multifunctioneel ondergronds ruimtegebruik, zoals bij het ondergrondse zwembad in Itäkeskus, dat in tijden van nood kan worden omgevormd tot schuilkelder. Een datacenter onder een kathedraal wordt via een ondergronds buizenstelsel gekoeld met zeewater. De restwarmte gaat – ook weer ondergronds – naar de stadsverwarming.

Er zijn grote voordelen verbonden aan multifunctionele leidingentunnels. Ilkka Vähäaho geeft aan dat het masterplan ook een bijdrage levert aan een betrouwbare energievoorziening en optimalisatie van energie-opwekking. Kosten kunnen worden gedeeld door meerdere gebruikers. Bovengronds ontstaat ruimte voor nieuwe initiatieven, en het uiterlijk en imago van de stad worden verbeterd. Onderhoud is eenvoudiger en goedkoper en de impact van werkzaamheden aan ondergrondse leidingen op het dagelijks leven bovengronds is beperkt. Bovengronds komt ruimte vrij voor andere doeleinden.

Lange historie

Helsinki heeft een lange historie van ondergronds bouwen. De stad kent nu al meer dan vierhonderd ondergrondse bouwwerken, zestig kilometer tunnels voor technisch onderhoud en tweehonderd kilometer multifunctionele leidingentunnels voor verwarming, koeling, elektriciteit en water. De watervoorziening van de stad is gegarandeerd door middel van een honderd kilometer lange ondergrondse tunnel die in de periode 1972-1982 werd gerealiseerd tussen Lake Päijanne en Helsinki.

Naast voor de hand liggende toepassingen als tunnels, parkeergarages en multifunctionele leidingentunnels voor onder andere stadsverwarming kent Helsinki ook tal van andere toepassingen, zoals muziekcentrum en een zwembad. Ook het bedrijfsleven gaat ondergronds, onder andere met opslag of het eerder genoemde ondergrondse datacenter.

In het masterplan is rekening gehouden met tweehonderd reserveringen voor ondergronds gebruik en nog eens veertig reserveringen zonder vooraf bepaalde bestemming. De gemiddelde oppervlakte van die reservering is dertig hectare, optellend tot een totaal van veertien honderd hectare, ofwel 6,4% van de oppervlakte van Helsinki. In 2011 werd berekend dat er voor elke honderd vierkante meter bovengrondse ruimte een vierkante meter ondergrondse ruimte werd benut. De huidige reserveringen vertegenwoordigen dus nog een enorm ondergronds potentieel.

Bovengrondse kwaliteit

Uitgangspunt is dat wat niet bovengronds hoeft, net zo goed ondergronds kan. Burgemeester Jussi Pajunen daarover in een documentaire van CNN: “Functies die niet gezien hoeven te worden, stoppen we onder de grond. Het is relatief goedkoop, dus waarom zou je er geen gebruik van maken.” De kwaliteit van de bovengrondse ruimte blijkt in veel gevallen de belangrijkste drijfveer. Ilkka Vähäaho: “Niet-Finse deskundigen beweren wel dat de gunstige eigenschappen van het bedrockgesteente en de zeer strenge winterklimatologische omstandigheden de belangrijkste drijfveren voor deze ontwikkeling zijn geweest. Maar er zijn belangrijker argumenten. Finnen hebben een sterke behoefte aan open ruimten, zelfs in de stadscentra, en Helsinki is klein. Het is qua inwoners de grootste stad van Finland, maar behoort qua oppervlakte tot de kleinste.”

Zero-land-use-thinking

Helsinki kent al sinds de jaren tachtig van de vorige eeuw een toewijzingsbeleid voor ondergronds ruimtegebruik. Begin deze eeuw ontstond het idee voor een integraal ondergronds masterplan. De eerste voorbereidingen startten in 2004. De gemeenteraad van Helsinki keurde het masterplan in december 2010 goed. Ilkka Vähäaho noemt het een voorbeeld van ‘zero-land-use-thinking’. Met andere woorden, het uitgangspunt dat nieuwe functies in de stad niet tot extra bovengronds ruimtebeslag mogen leiden.

Hij illustreert dat met een doorsnede van het Katri Vala Park (zie figuur hiernaast). Daar werden sinds de jaren vijftig ondergronds achtereenvolgens opslagruimten, een multifunctionele leidingentunnel, een tunnel voor gezuiverd afvalwater en een warmtepompstation gerealiseerd. In het masterplan is onder dezelfde locatie ook nog ruimte gereserveerd voor toekomstig ondergronds gebruik. Het park is in al die tijd onaangetast gebleven.

 

 

Geotechniek voor Ondergrondse Ruimteontwikkeling

Voor het in kaart brengen van geschikte locaties voor toekomstig ondergronds gebruik heeft de geotechnische dienst van Ilkka Vähäaho uitgebreid onderzoek gedaan. Er is onderzoek gedaan naar locaties waar de mogelijk grote aaneengesloten ruimten kunnen worden gerealiseerd. Daarvoor werd een model ontwikkeld op basis van een standaardruimte van 12x50x150 meter (hxbxl). Met behulp van (hoogte)kaarten en boringen zijn de reeds benutte ondergrond en zwakke zones in kaart gebracht.

Het bedrockgesteente ligt in Helsinki niet ver onder het maaiveld. Dat betekent dat er veel goede, veilige locaties zijn voor aanleg van ondergrondse bouwwerken en installaties. Het onderzoek maakte zichtbaar dat er buiten het centrum vijfenvijftig locaties zijn waar in de buurt van verkeersknooppunten redelijk grootschalige ondergrondse voorzieningen gerealiseerd kunnen worden. Deze plekken zijn gemarkeerd als mogelijke toekomstige toegangen tot ondergrondse bouwwerken en infrastructuur.

Ambities
In Finland wordt ook buiten de hoofdstad gekeken naar de mogelijkheden die de ondergrond biedt. Ilkka Vähäaho noemt de steden Tampere, de derde stad van het land, en Oulu als voorbeelden. En er wordt serieus gekeken naar de haalbaarheid van een tachtig kilometer lange onderzeese tunnel tussen Helsinki en de Estse hoofdstad Tallinn, die dan samen zouden moeten uitgroeien tot de tweelingstad ‘Talsinki’, met de potentie om te gaan concurreren met steden als Stockholm en Kopenhagen.

Dit was de Onderbreking Leren in de praktijk

Bekijk een ander koffietafelboek: