Loading...

De Onderbreking

Assetmanagement

Assetmanagement

Bouwen met bodemschatten in Utrecht

Amsterdam, Eerste Coentunnel

Standaard voor beheer en onderhoud wegtunnels

Zwemmen in een schuilkelder

SewerSense, op weg naar slim rioolbeheer

In Focus: Pionieren met waterleidingen

Rotterdam, Maastunnel

Aanpak wegtunnels Amsterdam

In Focus: Heropening Mauritshuis

Kennisbank

Assetmanagement

Veel tunnels in Nederland zijn tussen nu en tien jaar toe aan grootscheepse renovatie. Overige tunnels moeten slim worden onderhouden, en worden aangepast aan de veranderende eisen van deze tijd. In het COB-netwerk is veel kennis aanwezig over de manier waarop dit gedaan zou kunnen worden; de stap is nu om deze kennis te combineren en te benutten. Uitwisseling van opgedane kennis en ervaring kan helpen om de nieuwe processen efficiënter te laten verlopen en te zorgen voor slim beheer en onderhoud. Het gaat hierbij zowel om technische aspecten (bv. zinkvoegen, ICT) als om organisatorische.

Minstens zo complex is assetmanagement van (kleinere) ondergrondse infra zoals kabels en (buis)leidingen. Het aantal objecten dat aan renovatie, vervanging of grootschalig onderhoud toe is, is enorm. Het is echter niet duidelijk hoe groot de opgave precies is en hoe deze efficiënt aangepakt kan worden. Het COB kan daarbij een belangrijke rol spelen, door het helpen uitwisselen van kennis en ervaringen en het zoeken naar slimme oplossingen.

Schatkamer Domplein II: tweeduizend jaar diep in de ondergrond

“Tweeduizend jaar geschiedenis aanraakbaar en beleefbaar maken voor burger en toerist, dat is wat we hier willen bereiken.” Theo van Wijk, initiatiefnemer van Domplein 2013, vat in een zin een project samen dat qua complexiteit zijn gelijke niet kent. Schatkamer II, een publiekscentrum annex archeologische opgraving onder het Domplein in Utrecht, is een hoogstandje van organisatie én van ondergronds bouwen.

Het Domplein herbergt tweeduizend jaar geschiedenis, van het Romeinse castellum Trajectum uit de eerste eeuw na Christus tot de dag van vandaag. Het is een van de drieëntwintig rijksarcheologische monumenten in Nederland, waar iedereen uiterst zorgvuldig mee om wil springen. In het Verdrag van Malta, dat in 1992 door een aantal EU-lidstaten werd ondertekend, wordt archeologisch erfgoed als het Domplein omschreven als ‘alle overblijfselen, voorwerpen en andere sporen van de mens uit het verleden, waarvan het behoud en de bestudering bijdragen tot het reconstrueren van de bestaansgeschiedenis van de mensheid en haar relatie tot de natuurlijke omgeving ‘.

Om dat zo zorgvuldig mogelijk te verwezenlijken, worden in Utrecht de archeologische overblijfselen niet naar een museum gebracht, maar wordt het museum, Schatkamer Domplein II, naar de overblijfselen gebracht. Met andere woorden, het museum wordt om de overblijfselen heen gebouwd. Zo blijft belangrijk archeologisch erfgoed in situ bewaard en tegelijkertijd toegankelijk gemaakt. Een unieke oplossing waar met belangstelling, maar soms ook met argusogen, naar wordt gekeken.

(Foto: Stichting Domplein 2013)

Onverwachte ontwikkelingen

Ed Smienk, hoofd adviesgroep civiele techniek van ABT, is al vijf jaar aan het project verbonden. Aan de rand van de bouwkuip annex opgraving vertelt hij over de technische uitdagingen die elkaar blijven opvolgen. De rode draad in zijn verhaal is dat zekerheden van vandaag morgen weer op losse schroeven kunnen staan. Elke onverwachte vondst in de ondergrond kan invloed hebben op de constructie en dus vragen om nieuwe slimme oplossingen.

Het project startte met een intensieve voorbereiding. Voor een nulmeting van de staat van de omliggende bebouwing, waaronder de 112 meter hoge Domtoren, is gebruikgemaakt van cameradrones. Met informatie over eerdere deelopgravingen, grondradar, een 3D-laserscan, uitgebreide sonderingen en nieuwe proefsleuven en –ontgravingen, is het werkgebied in kaart gebracht. Dat maakte het mogelijk om zonder verstoring van de archeologische overblijfselen rondom een damwand in de grond te drukken. Daarmee is het gebied afgebakend waar opgraving is toegestaan en zijn meteen de contouren van Schatkamer II gemarkeerd.

Binnen het 350 vierkante meter grote gebied bevinden zich de uit 1480 daterende pilaren van het middenschip van de Domkerk, dat in 1674 door een tornado werd verwoest. Enkele van die pilaren zijn dragend in de dakconstructie van Schatkamer II. De dakconstructie is de eerstvolgende stap. Die zal bestaan uit een stempelraam met uitsparingen voor latere toevoeging van de glasvensters, dat later in het uiteindelijke betondek wordt geïntegreerd. Het geheel rust behalve op de oude pilaren ook op de damwand en drie extra toegevoegde funderingspalen. De extra constructieve voorzieningen maken het mogelijk dat het betondek kan worden verdund tot 350 millimeter en bij niet-dragende pijlers zelfs tot 200 millimeter.

Veiligstellen

In het najaar van 2013 moet het Domplein weer ogen als vanouds, terwijl de archeologen onder het maaiveld doorgaan met het tot op vijf meter diepte verder blootleggen van de geschiedenis. Allerlei bouwkundige maatregelen moeten ervoor zorgen dat er bij die verdere opgraving niets mis kan gaan. Zo wordt vooraf met groutinjecties en ijzeren pinnen de stabiliteit van een romaanse constructie van veldkeien veiliggesteld. De vochthuishouding wordt continu in de gaten gehouden en mogelijke compensatiemaatregelen zijn vooraf doorgerekend en staan paraat om toegepast te worden als dat nodig blijkt.

De locatie van Schatkamer II is in 1949 al eens blootgelegd door archeoloog Van Giffen. De huidige archeoloog van het Domplein, Robert Hoegen, verwacht desondanks nieuwe vondsten: “We kunnen gebruikmaken van de nieuwste technieken. Van Giffen had bijvoorbeeld nog geen metaaldetectie. We hebben al verschillende munten gevonden en verwachten nog meer te vinden.” (Foto: via Erfgoed Nederland)

Het ongeschonden in situ bewaren van archeologische overblijfselen is niet de enige randvoorwaarde die bij ABT tot hoofdbrekens leidde. Uitgangspunt is ook dat het Domplein op het oude maaiveldniveau en met behoud van de bestaande functie als evenementenlocatie gehandhaafd blijft. Met de archeologische restanten dicht onder het maaiveld liet dit weinig ruimte voor het betondek, dat bovendien geschikt moest zijn voor verkeersklasse 600 (geschikt voor zeer zwaar vrachtverkeer). Die belastingseis geldt ook voor de drie ovale ramen die het straks mogelijk maken vanaf straatniveau in de Schatkamer te kijken.

Een tweede complicerende factor is de drukke Utrechtse binnenstad. De werkzaamheden zijn enkele malen onderbroken omdat het Domplein plaats moest bieden voor grootschalige evenementen als de opening van de Vrede van Utrecht-viering, Roze Zaterdag en VJ op de Dom. Dat betekende steeds dat het Schatkamergebied voor enkele dagen schoon en veilig moest worden opgeleverd. Deze omstandigheden hebben ook geleid tot een uitvoeringswijze waarbij eerst een betonnen stempelraam wordt aangebracht tussen de damwanden. De archeologische ontgravingen vinden plaats onder het stempelraam. De grond kan via uitsparingen voor de vensters worden afgevoerd terwijl er over het stempelraam kan worden gereden met graafmachines. Uiteindelijk wordt het stempelraam geïntegreerd in het definitieve betondek.

In 3D

ABT heeft van meet af aan alle gegevens in 3D vastgelegd. Niet alleen voor de bouw (BIM), maar ook voor de omgeving (BEM: Building Environment Modelling). Die werkwijze is steeds van groot belang geweest in het overleg met de Rijksdienst voor het Cultureel Erfgoed (RCE), die verantwoordelijk is voor de rijksarcheologische monumenten in Nederland. Ook voor de RCE is de combinatie van behoud en beleving van archeologisch erfgoed een nieuwe ontwikkeling. De 3D-documentatie helpt oplossingen inzichtelijk te maken, te overtuigen van de risicomijdende aanpak en biedt een schat aan aanvullende informatie voor educatieve doeleinden.

Amsterdam, Eerste Coentunnel

De Eerste Coentunnel is meer dan veertig jaar oud. (Foto: Kees Stuip Fotografie)

In mei 2013 ging de Tweede Coentunnel open voor het verkeer. Dat was het moment waarop de renovatie begon van de pal ernaast gelegen Eerste Coentunnel. Deze afzinktunnel onder het Noordzeekanaal stamt uit 1966 en moet nodig worden gemoderniseerd om weer vijftig jaar op een goede en veilige manier het autoverkeer over de A10 tussen Amsterdam en Zaandam te kunnen verwerken. De tunnelconstructie wordt gerenoveerd en er worden maatregelen genomen om de luchtkwaliteitsbeheersing te verbeteren. Verder krijgt de tunnel alle verkeers- en tunneltechnische installaties die in de Tweede Coentunnel zijn toegepast om te voldoen aan de eisen van de nieuwe tunnelstandaard.

De renovatie wordt in opdracht van Rijkswaterstaat uitgevoerd door het consortium Coentunnel Company en is onderdeel van het DBFM-contract ‘Capaciteitsuitbreiding Coentunnel’ dat loopt tot 2037. De planning is dat de gerenoveerde tunnel medio 2014 in gebruik wordt genomen. Dan biedt deze tunnel drie vaste rijbanen voor het wegverkeer dat in zuidelijke richting rijdt, van Zaandam naar Amsterdam.

Werkzaamheden

Er is gestart met sloopwerkzaamheden. Alle tegels van de wanden zijn verwijderd evenals stukken beton die niet meer voldeden, het wegdek en alle oude kabels, leidingen en installaties. De wanden zijn voorzien van een onderhoudsarme betonnen afwerklaag en deels van brandwerend materiaal om te zorgen dat de tunnel bij een eventuele brand zijn constructieve integriteit behoudt. Ook de plafonds zijn voorzien van (hergebruikt) hittewerend materiaal.

(Foto: Kees Stuip Fotografie)

Voor het verbeteren van de luchtkwaliteitsbeheersing in de tunnel is de open dakconstructie bij de tunnelmonden vervangen door dichte ‘plafonds’. Verder is een schoorsteen van 25 meter hoog gebouwd die de uitlaatgassen uit de tunnel moet afvoeren. Om de plafonds te kunnen maken, moest een aantal betonnen stempels bij de tunnelmonden worden verwijderd. Een tijdelijke stempelconstructie – die de functie van de stempels overnam – zorgde er tijdens de bouwfase voor dat de hoge wanden niet naar binnen werden gedrukt en de tunnel ondertussen toegankelijk bleef voor het werkverkeer.

Door het verwijderen van de betonnen stempels en andere sloopwerkzaamheden nam het gewicht van de tunnelconstructie tijdelijk fors af. Daardoor bestond de kans dat de constructie door het grondwater omhoog zou worden gedrukt. Om dat te voorkomen, zijn stapels stalen rijplaten als extra gewicht op de tunnelvloer gelegd.

De tunnel wordt voorzien van diverse installaties die zorgen voor een vlotte en veilige doorstroming van het verkeer. Daarbij gaat het om camera’s, matrixborden boven de weg, verplaatsbare informatiepanelen en sensoren in het wegdek die registreren of het verkeer rijdt of stilstaat. Verder krijgt de tunnel ventilatoren die bij brand de rook uit de tunnel afvoeren, brandbluspompen die automatisch aangaan en licht- en geluidsignalen die passagiers richting de vluchtwegen leiden. De aansturing van al deze installaties gebeurt met een geavanceerd bedienings- en besturingssysteem.

Aanpak

Vanwege de korte periode waarin de renovatie en het testen van alle installaties moeten zijn afgerond, is het cruciaal dat alle werkzaamheden in één keer goed gaan. Dat vereist een goede engineering en bouwfasering. De Coentunnel Construction, de uitvoerende organisatie onder de Coentunnel Company, heeft hiervoor ingenieursbureau Sophia Engineering ingeschakeld.

Het ontwerpteam heeft bij de engineering al rekening gehouden met alle installaties en kabels en leidingen, zodat de kans op onaangename verrassingen tijdens de uitvoering minimaal is. Verder is er een driedimensionaal model gemaakt, waarin alle werkzaamheden in de tijd zijn gevisualiseerd. Dit model zorgt er niet alleen voor dat de fasering helder is, maar geeft direct inzicht in de complexe aanpassingen van de betonvormen van de schoorsteenconstructie en laat zien welke raakvlakken er zijn tussen de verschillende werkzaamheden

Integrale visie op techniek en mensenwerk

Hoe houd je wat je hebt? In een land dat bijna ‘af’ is, neemt het belang van beheer van infrastructurele werken toe. Niet alleen omdat de focus minder op nieuwbouw ligt, maar ook omdat de beheeropgave groeit. De uitdaging is om achterstallig onderhoud en een ontoereikende restlevensduur te voorkomen. De vraag is hoe daarbij te voldoen aan de huidige veiligheidseisen en tegelijkertijd de beschikbaarheid te garanderen.

D.O.N. Bureau en Twynstra Gudde werken aan een integrale aanpak, die moet leiden tot een standaard voor beheer en onderhoud van wegtunnels. Praktijkervaring met diverse rijks- en provinciale tunnels heeft bijgedragen aan de uitbreiding van de Landelijke Tunnelstandaard van Rijkswaterstaat met een beheer- en organisatiecomponent.

Hans Janssens (D.O.N. Bureau) en Frank van Es (Twynstra Gudde) zoeken naar wegen om om te gaan met het spanningsveld tussen veiligheid en doorstroming aan de ene kant en de beperkte middelen aan de andere kant. Zij pleiten voor een aanpak vanuit risicobenadering. ‘Aantoonbaar veilig’, het uitgangspunt van de Tunnelwet, is ook hier het vertrekpunt. Hans Janssens over het voorliggende probleem: “Bij infrastructurele objecten wordt uitgegaan van een levensduur van honderd jaar voor de constructie en tien tot vijftien jaar voor de installaties. Als je de klok theoretisch doorzet, moet je concluderen dat we vaker langer met onze kunstwerken door moeten. We hebben niet het financiële volume om alles aan het eind van de theoretische levensduur volledig te vervangen. We zullen dus instandhoudingsconcepten moeten ontwikkelen die de levensduur oprekken. Concepten die balans brengen in de belangen op het gebied van veiligheid, doorstroming en kostenbeheersing.”

Onfeilbaar bestaat niet

Het falen van techniek en menselijk handelen is een zeer reëel risico. Denken in risico’s en het mitigeren daarvan is voor Janssens en Van Es het vertrekpunt. Veroudering, onvoorziene omstandigheden, externe invloeden, het komt allemaal voor. De vraag is dus niet óf de veiligheid bedreigd wordt, maar wanneer en waardoor. En vooral: hoe ga je daar dan mee om? Kortom, onder welke condities kan de veiligheid niet langer gegarandeerd worden en hoe moet je dan ingrijpen? En hoe voorkom je dat een mogelijk veiligheidsrisico in de tunnel als een pavlovreactie meteen leidt tot afsluiting en het mogelijk creëren van een veiligheidsrisico buiten de tunnel?

Bij de nieuwe tunnelstandaard werd een infographic gemaakt over de handelingen bij een tunnelbrand. (Beeld: RWS)

De zoektocht naar een evenwichtige aanpak van beheer en onderhoud begint bij een benadering van veiligheidsrisico’s die tot een proportionele aanpak leidt. Hans Janssens: “Je moet definiëren wat voldoende veilig is. Bij veiligheid zijn we geneigd de oplossing direct in de techniek te zoeken en onvoldoende naar de menselijke component te kijken. Als je redeneert vanuit risicobeheersing, moet je zowel naar de techniek als naar processen en procedures kijken. Je moet handelen op basis van vooraf vastgestelde faaldefinities. Als er zich iets voordoet, wat doe je dan? Daarbij zien we regelmatig dat er wel technisch onderhoud wordt gepleegd, maar dat de kennis binnen organisaties op het gebied van processen en procedures onvoldoende wordt onderhouden.”

Frank van Es: “Wij willen integraliteit bewerkstelligen. De uitdaging zit in de afstemming. Met techniek alleen zijn veiligheid en doorstroming nog niet geborgd. De borging van veiligheid en continuïteit blijft voor een groot deel mensenwerk. Met goed opgeleid personeel bij de verkeerscentrales, dat de functionaliteit en het gedrag van de wegtunnels kent. En adequaat opgeleid onderhoudspersoneel, dat ervoor zorgt dat het vereiste veiligheidsniveau wordt behaald met voldoende betrouwbare installaties. Bij integraal denken hoort ook dat daarbij de werkzaamheden de doorstroming van het verkeer niet te veel mogen belemmeren. Tot slot dienen hulpverleners opgeleid, getraind en geoefend te zijn in het bestrijden van calamiteiten binnen de complexe omgeving van wegtunnels. Vergeet niet dat bij de grote calamiteiten in de Alpenlanden niet alleen de techniek faalde, maar met name ook de organisatie.”

“Om de gewenste integraliteit te realiseren, hebben we functionele faalbaarheidsfactoren nodig. Aan welke kwaliteitscriteria dienen techniek en menselijk handelen minimaal te voldoen om een tunnel open te mogen stellen? In de praktijk wil je daarnaast heel snel kunnen analyseren of je een veiligheidsrisico kunt mitigeren met andere functies, zoals een gedeeltelijke afsluiting of snelheidsverlaging. Een dichte tunnel is immers een veilige tunnel, maar belemmert de doorstroming en introduceert mogelijk risico’s op wegdelen buiten de tunnel.”

“Om een integrale afweging te kunnen maken, moet de verantwoordelijkheid op de goede plek liggen. De formele tunnelbeheerder is conform de wet verantwoordelijk voor de veiligheid in de tunnel. De afweging tussen de risico’s in de tunnel en het mogelijke risico buiten de tunnel bij gehele of gedeeltelijke afsluiting dient op een hoger niveau plaats te vinden”, aldus Janssens en Van Es.

Handreiking voor tunnelburgemeesters
Voordat een tunnel opengaat voor verkeer, moet de gemeente waarin de tunnel ligt een openstellingsvergunning afgeven. Dat gaat niet altijd van een leien dakje en de tunnelburgemeesters (burgemeesters van gemeenten met een tunnel) voorzien meer problemen door de nieuwe tunnelwetgeving. Maart 2012 hebben ze daarom het lectoraat Transportveiligheid van NIFV en TNO de opdracht gegeven om een handreiking openstellingsvergunning voor tunnelburgemeesters op te stellen. Deze is eind mei 2013 gepubliceerd.
>> Naar de handreiking op de kennisbank

 

 

 

 

Verbetercyclus

“De faaldefinities zoals die zijn vastgelegd in de Landelijke Tunnelstandaard zijn gerelateerd aan de werkelijke kans op een significant incident. Falen van tunneltechnische installaties leidt immers niet per definitie tot verkeersincidenten. Vanuit de risicogedachte is gekeken naar gedoogtermijnen. Daarmee maak je het geheel beheersbaarder en reëler en voorkom je dat als iets in de techniek niet werkt, de tunnel meteen als niet veilig wordt gekenmerkt. Als de brandblusinstallatie faalt, moet dan per definitie meteen de tunnel dicht? Of is het verantwoord te volstaan met het afsluiten van een rijstrook of het inzetten van een snelheidsbeperking? En kun je dat een bepaalde tijd gedogen, zodat er tijd is om het technische mankement op te lossen?”

Het beheer inrichten op basis van de risicobenadering lijkt complex. In de praktijk beproeven D.O.N. Bureau en Twynstra Gudde hun inzichten op de pragmatische toepassing van risicogestuurd onderhoud en OTO-programma’s (Opleiden, Trainen en Oefenen) binnen diverse rijks- en provinciale tunnels. Hans Janssens is positief over de brede toepasbaarheid: “Dat we met de faaldefinities eenduidig hebben benoemd wat falen is, is een van de grootste winsten van dit moment. Op het gebied van instandhouding kunnen we daarnaast vanuit de Leidraad Instandhouding Tunnels werken aan een methodische aanpak die is gebaseerd op een verbetercyclus (Plan, Do, Check, Act) vanuit risicodenken. Dit past een-op-een bij de gedachte achter de veiligheidsketen. We brengen de risico’s die de veiligheid bedreigen, in kaart. Vervolgens bepalen we de mitigerende maatregelen (onderhoud van techniek en kennis) en meten de doelmatigheid ervan. Daar waar nodig worden plannen bijgesteld. Indien budgetten onder druk staan, kun je de mogelijke gevolgen daarvan inzichtelijk maken: gevolgen voor de beschikbaarheid en de betrouwbaarheid, met veiligheid als altijd geldende randvoorwaarde. Aantoonbaar veilig ten aanzien van techniek en mensenwerk.”

Zwemmen in een schuilkelder

De Finse hoofdstad Helsinki beschikt sinds 2010 over een integraal ondergronds masterplan. Het plan brengt de bestaande ondergrondse toepassingen in kaart en voorziet in reserveringen voor toekomstig gebruik. Volgens Ilkka Vähäaho, hoofd van de geotechnische divisie van Helsinki en voorzitter van de Finse tunnelassociatie, is het plan een onmisbaar hulpmiddel voor duurzame ontwikkeling van de stad en zijn ondergrond.

Vähäaho: “Het masterplan voor de ondergrond is bijvoorbeeld het fundament voor de bijdrage van de ondergrond aan een duurzaam en esthetisch acceptabel landschap en behoud van ontwikkelmogelijkheden voor toekomstige generaties. Zo speelt het masterplan een belangrijke rol in de ruimtelijke ordening.”

Het ondergrondse masterplan voor Helsinki brengt zowel de bestaande als toekomstige ondergrondse ruimten, tunnels en vitale ondergrondse onderlinge verbindingen in kaart. In het plan zijn reserveringen opgenomen voor nu nog onbekende toekomstige ondergrondse toepassingen. Op basis van uitgebreid geologisch onderzoek is bepaald welke plekken in de ondergrond geschikt zijn. Daarbij is vooral gekeken welke nog niet benutte ondergrondse capaciteit in de toekomst een bijdrage kan leveren aan het verminderen van de druk op het stadscentrum. Anders dan in Nederland, waar de meeste ondergrondse bouwwerken ‘stand-alone’ zijn, ontwikkelt de ondergrond van Helsinki zich door het verbinden van bestaande en nieuwe ondergrondse toepassingen steeds meer tot een aaneengesloten ondergrondse stad.

De integrale aanpak biedt extra voordelen boven op die van het sec ondergronds gaan. Er is sprake van multifunctioneel ondergronds ruimtegebruik, zoals bij het ondergrondse zwembad in Itäkeskus, dat in tijden van nood kan worden omgevormd tot schuilkelder. Een datacenter onder een kathedraal wordt via een ondergronds buizenstelsel gekoeld met zeewater. De restwarmte gaat – ook weer ondergronds – naar de stadsverwarming.

Er zijn grote voordelen verbonden aan multifunctionele leidingentunnels. Ilkka Vähäaho geeft aan dat het masterplan ook een bijdrage levert aan een betrouwbare energievoorziening en optimalisatie van energie-opwekking. Kosten kunnen worden gedeeld door meerdere gebruikers. Bovengronds ontstaat ruimte voor nieuwe initiatieven, en het uiterlijk en imago van de stad worden verbeterd. Onderhoud is eenvoudiger en goedkoper en de impact van werkzaamheden aan ondergrondse leidingen op het dagelijks leven bovengronds is beperkt. Bovengronds komt ruimte vrij voor andere doeleinden.

Lange historie

Helsinki heeft een lange historie van ondergronds bouwen. De stad kent nu al meer dan vierhonderd ondergrondse bouwwerken, zestig kilometer tunnels voor technisch onderhoud en tweehonderd kilometer multifunctionele leidingentunnels voor verwarming, koeling, elektriciteit en water. De watervoorziening van de stad is gegarandeerd door middel van een honderd kilometer lange ondergrondse tunnel die in de periode 1972-1982 werd gerealiseerd tussen Lake Päijanne en Helsinki.

Naast voor de hand liggende toepassingen als tunnels, parkeergarages en multifunctionele leidingentunnels voor onder andere stadsverwarming kent Helsinki ook tal van andere toepassingen, zoals muziekcentrum en een zwembad. Ook het bedrijfsleven gaat ondergronds, onder andere met opslag of het eerder genoemde ondergrondse datacenter.

In het masterplan is rekening gehouden met tweehonderd reserveringen voor ondergronds gebruik en nog eens veertig reserveringen zonder vooraf bepaalde bestemming. De gemiddelde oppervlakte van die reservering is dertig hectare, optellend tot een totaal van veertien honderd hectare, ofwel 6,4% van de oppervlakte van Helsinki. In 2011 werd berekend dat er voor elke honderd vierkante meter bovengrondse ruimte een vierkante meter ondergrondse ruimte werd benut. De huidige reserveringen vertegenwoordigen dus nog een enorm ondergronds potentieel.

Bovengrondse kwaliteit

Uitgangspunt is dat wat niet bovengronds hoeft, net zo goed ondergronds kan. Burgemeester Jussi Pajunen daarover in een documentaire van CNN: “Functies die niet gezien hoeven te worden, stoppen we onder de grond. Het is relatief goedkoop, dus waarom zou je er geen gebruik van maken.” De kwaliteit van de bovengrondse ruimte blijkt in veel gevallen de belangrijkste drijfveer. Ilkka Vähäaho: “Niet-Finse deskundigen beweren wel dat de gunstige eigenschappen van het bedrockgesteente en de zeer strenge winterklimatologische omstandigheden de belangrijkste drijfveren voor deze ontwikkeling zijn geweest. Maar er zijn belangrijker argumenten. Finnen hebben een sterke behoefte aan open ruimten, zelfs in de stadscentra, en Helsinki is klein. Het is qua inwoners de grootste stad van Finland, maar behoort qua oppervlakte tot de kleinste.”

Zero-land-use-thinking

Helsinki kent al sinds de jaren tachtig van de vorige eeuw een toewijzingsbeleid voor ondergronds ruimtegebruik. Begin deze eeuw ontstond het idee voor een integraal ondergronds masterplan. De eerste voorbereidingen startten in 2004. De gemeenteraad van Helsinki keurde het masterplan in december 2010 goed. Ilkka Vähäaho noemt het een voorbeeld van ‘zero-land-use-thinking’. Met andere woorden, het uitgangspunt dat nieuwe functies in de stad niet tot extra bovengronds ruimtebeslag mogen leiden.

Hij illustreert dat met een doorsnede van het Katri Vala Park (zie figuur hiernaast). Daar werden sinds de jaren vijftig ondergronds achtereenvolgens opslagruimten, een multifunctionele leidingentunnel, een tunnel voor gezuiverd afvalwater en een warmtepompstation gerealiseerd. In het masterplan is onder dezelfde locatie ook nog ruimte gereserveerd voor toekomstig ondergronds gebruik. Het park is in al die tijd onaangetast gebleven.

 

 

Geotechniek voor Ondergrondse Ruimteontwikkeling

Voor het in kaart brengen van geschikte locaties voor toekomstig ondergronds gebruik heeft de geotechnische dienst van Ilkka Vähäaho uitgebreid onderzoek gedaan. Er is onderzoek gedaan naar locaties waar de mogelijk grote aaneengesloten ruimten kunnen worden gerealiseerd. Daarvoor werd een model ontwikkeld op basis van een standaardruimte van 12x50x150 meter (hxbxl). Met behulp van (hoogte)kaarten en boringen zijn de reeds benutte ondergrond en zwakke zones in kaart gebracht.

Het bedrockgesteente ligt in Helsinki niet ver onder het maaiveld. Dat betekent dat er veel goede, veilige locaties zijn voor aanleg van ondergrondse bouwwerken en installaties. Het onderzoek maakte zichtbaar dat er buiten het centrum vijfenvijftig locaties zijn waar in de buurt van verkeersknooppunten redelijk grootschalige ondergrondse voorzieningen gerealiseerd kunnen worden. Deze plekken zijn gemarkeerd als mogelijke toekomstige toegangen tot ondergrondse bouwwerken en infrastructuur.

Ambities
In Finland wordt ook buiten de hoofdstad gekeken naar de mogelijkheden die de ondergrond biedt. Ilkka Vähäaho noemt de steden Tampere, de derde stad van het land, en Oulu als voorbeelden. En er wordt serieus gekeken naar de haalbaarheid van een tachtig kilometer lange onderzeese tunnel tussen Helsinki en de Estse hoofdstad Tallinn, die dan samen zouden moeten uitgroeien tot de tweelingstad ‘Talsinki’, met de potentie om te gaan concurreren met steden als Stockholm en Kopenhagen.

Op weg naar slim rioolbeheer

Een inspectievoertuig met verschillende camera’s en sensoren in combinatie met automatische beeldherkenning vormt de basis van SewerSense, een slim assetmanagementsysteem voor rioolstelsels dat de TU Delft en de Universiteit Leiden ontwikkelen. Onderzoekers Lisa Scholten en Dirk Meijer lichten toe.

Om ons afvalwater te transporteren naar rioolzuiveringsinstallaties ligt in de Nederlandse ondergrond een gigantisch netwerk van rioolbuizen. Totaal gaat het om meer dan 130.000 kilometer aan leidingen. Het is van groot belang dat dit netwerk goed functioneert en niet beschadigd raakt. Als dat wel gebeurt, kan vuil afvalwater bijvoorbeeld de bodem en het grondwater verontreinigen. Ook kunnen lekken ertoe leiden dat het riool als drainagesysteem gaat werken. Daardoor worden grote hoeveelheden grondwater afgevoerd naar de zuiveringsinstallatie, wat een negatief effect heeft op het zuiveringsrendement. En ingegroeide wortels kunnen de afvoer belemmeren en ongewenste sedimentatie veroorzaken. Om dit soort gebeurtenissen te voorkomen, wordt elk stuk riool gemiddeld eens in de tien jaar geïnspecteerd. Hierbij wordt een camera door de buizen gevoerd, waarbij een inspecteur de beelden beoordeelt en de actuele staat van de buizen vaststelt.

“Het beoordelen van de beelden is niet eenvoudig en afhankelijk van de beoordelaar”, legt Scholten uit. “Is er bijvoorbeeld sprake van een diepe scheur die spoedig leidt tot lekkage of instorting van de rioolbuis of is het een onschuldige verkleuring van de wand? Op de camerabeelden is dat vaak niet goed te zien, waardoor er bij het beoordelen geregeld fouten worden gemaakt. Daar komt bij dat ook op basis van een juiste beoordeling vaak niet duidelijk is hoe lang een rioolbuis nog kan worden gebruikt voordat er problemen ontstaan, zoals lekkage of instorting. Een deel van de oplossing voor dit probleem is het verzamelen van betere en betrouwbaarder informatie over de staat van het riool.”

Hardware en software

Scholten vervolgt: “Dit proberen we in het project SewerSense via twee sporen te bereiken. Binnen het eerste spoor onderzoeken we of met andere camera’s en sensoren de kwaliteit van de inspectiebeelden te verbeteren is. Met een 3D-camera kun je bijvoorbeeld diepte goed in beeld brengen en met een laserscanner kun je nauwkeurig de geometrie van rioolbuizen bepalen en vervormingen vaststellen. Om tot een goede keuze voor camera’s en sensoren te komen, werken we onder andere samen met collega-onderzoekers Mathieu Lepot en Francois Clemens. Zij werken aan een soort amfibievoertuig, waarmee riolen kunnen worden geïnspecteerd die in gebruik zijn. Voor hun onderzoek beproeven zij dit voertuig met allerlei sensoren zoals lasers, infraroodcamera’s en binnenkort sonar. Aan de hand van hun onderzoek wordt duidelijk welke technieken betere informatie opleveren.”

Meijer vult aan: “Naast betere beelden werken we ook aan een methode om de beoordeling objectiever en efficiënter te maken. Daarbij maken we gebruik van zogeheten neurale netwerken; geavanceerde computerprogrammatuur die min of meer op eenzelfde manier werkt als het menselijke brein. Zo’n neuraal netwerk is zelflerend en kun je trainen. Daarvoor gebruik ik circa twee miljoen beelden die de afgelopen jaren met inspectiecamera’s in rioolstelsels zijn gemaakt.”

“De training bestaat eruit dat ik het netwerk steeds een beeld voorleg dat het moet beoordelen. In het begin gokt het netwerk of er wel of geen schade zichtbaar is. Vervolgens ‘vertel’ ik het netwerk wat het juiste antwoord is. Die kennis gebruikt het netwerk bij volgende beoordelingen, het vergelijkt nieuwe beelden met beelden die het eerder heeft gezien. Daardoor wordt het steeds beter in het herkennen van de verschillende vormen van schade. Aangezien we het netwerk zodanig willen trainen dat het straks alle schadevormen herkent, gaan we ook laboratoriumexperimenten uitvoeren. Daarvoor gaan we met verschillende camera’s en sensoren beelden maken van specifieke schadegevallen. Die beelden willen we ook gebruiken voor het trainen van het netwerk.”

‘Door het trainen wordt het systeem steeds beter in het herkennen van de verschillende vormen van schade.’

“Een belangrijk voordeel van geautomatiseerde beeldherkenning is tijdwinst. Een computer kan een grote hoeveelheid beelden veel sneller beoordelen dan een mens. Daarnaast vermindert automatische beeldherkenning de kans op menselijke fouten. De objectiviteit neemt dus toe. Overigens is het niet zo dat de rol van de inspecteurs bij het beoordelen volledig verdwijnt. Zo zullen er altijd beelden blijven waarover ook het neurale netwerk twijfelt. Die beelden worden ter beoordeling voorgelegd aan de inspecteur.”

Nauwkeurig voorspellen

Scholten: “Zoals ik al zei zijn betere en betrouwbaarder informatie alleen niet voldoende. Rioolbeheerders moeten ook weten wat een bepaald defect betekent voor het gebruik van het riool om op basis van de inspectieuitkomsten goede besluiten te kunnen nemen over het onderhoud. Ook daarbij willen we hen helpen. Ons plan is een model te ontwikkelen dat aangeeft hoe groot de kans is dat een bepaald defect zoals een scheur in de wand van een rioolbuis, tot een ernstig probleem of storing leidt. Denk aan lekkage of het instorten van een deel van het riool. Daarbij willen we allerlei belangrijke factoren meenemen zoals de leeftijd en het materiaal van het betreffende riool, de lokale bodemopbouw en de externe belasting. Rijdt er bijvoorbeeld veel verkeer over het riooltracé?”

“De ontwikkeling van een dergelijk model is een kwestie van lange adem. Om betrouwbare voorspellingen te kunnen doen, hebben we veel gegevens nodig, het liefst van twee of meer opeenvolgende inspecties. Op dit moment hebben we die nog nauwelijks. We vullen het model nu met gegevens uit datasets van twee gemeenten. Aan de hand van die gegevens bepalen we of we extra data van gemeenten nodig hebben, en of we wellicht ook expertkennis moeten verzamelen en invoeren. Uiteindelijk hopen we het model zo goed te krijgen, dat we er nauwkeurig mee kunnen vaststellen welke combinatie van factoren bepalend is voor de de kans op een storing en hoe groot de bijdrage van elke afzonderlijke factor is. Die kennis is belangrijk om te bepalen hoeveel riool vervangen dient te worden en welke stukken prioriteit moeten krijgen. Daarnaast hopen we met het model verschillende onderhoudsstrategieën te kunnen beoordelen en de toegevoegde waarde van geautomatiseerde beeldherkenning aan te tonen.”

In de tv-serie Nederland van boven werd onder meer ingezoomd op Breda, waar zo’n duizend kilometer riool onder de grond ligt. (Beeld: NPO)
>> Bekijk het item

Pionieren met waterleidingen

Dunea heeft een nieuwe techniek ontwikkeld om distributieleidingen voor drinkwater goedkoper en met minder overlast voor bewoners te saneren. Door een stevige ballon op te blazen in de leiding, hoeft het water voor andere aansluitingen op dezelfde leiding niet te worden onderbroken. Zo kan een leiding in kleinere delen worden vervangen.

Op de IJsselkade in Leiden zijn Dunea-monteurs Peter van de Burg en Mario Kreber al vroeg bezig met de voorbereidingen. Er moet over een lengte van dertig meter een gietijzeren leiding worden vervangen. Nadat de waterleiding met een graafmachine is blootgelegd, wordt een gat in de oude distributieleiding geboord. Daarna brengen de monteurs via het gat een blaas (ballon) in de buis. De blaas wordt opgepompt en sluit de buis luchtdicht af. Vervolgens kan de oude buis worden verwijderd. Op de nieuwe leiding komt een speciale afsluitbare koppeling, waarop de volgende dag wordt voortgebouwd. Het is een nieuwe techniek waarmee Dunea nu ervaring opdoet.

“Geweldig. Je hoeft geen noodleidingen meer aan te leggen”, zegt Peter. “Bovendien zitten onze klanten minder lang zonder water. In plaats van een hele wijk af te sluiten, hoeven we alleen het water in de straat waar we de leiding vervangen tijdelijk af te sluiten.”

Geen noodleiding

Het idee ontstond binnen MOC-operationeel, de afdeling die nadenkt over materialen en methodieken. André Koning en Michel Helgers werkten het verder uit: “We wilden een manier bedenken om distributieleidingen te saneren zonder aanleg van noodleidingen. Een noodleiding leggen en weer weghalen, betekent veel graafwerkzaamheden, en het bedraagt al snel een derde van de totale saneringskosten. Bovendien wordt de noodleiding vaak maar één keer gebruikt en daarna weggegooid. Werken zonder noodleidingen is dus minder belastend voor het milieu.”

Per jaar vervangt Dunea vijfendertig kilometer aan leidingen in vele projecten. Peter: “We vervangen met de nieuwe methodiek gemiddeld dertig tot veertig meter op een dag. In de pilot testen we onder meer hoe de blaas zich houdt bij gietijzeren leidingen. De binnenkant van dit type leidingen is soms wat ruw. We testen of de blaas daartegen bestand is en niet beschadigt raakt of knapt. Tot nu toe is dat niet gebeurd. De eerste bevindingen zijn positief!”

Om half twaalf ’s ochtends is de dagproductie van de pilot al gehaald: dertig meter oude distributieleiding is vervangen door een nieuwe pvc buis met een diameter van honderdtien millimeter. Daarna kan de graafsleuf weer dichtgegooid worden met zand. De mannen nemen na gedane arbeid eerst even pauze in de schaftkeet met koffie en een paar flinke boterhammen met spek. André Koning vertelt dat ze de nieuwe techniek al een naam hebben gegeven: de HELKO-methodiek. “HEL is van Helgers en KO is van Koning”, legt Andre glimlachend uit.

Reacties

Het is goed mogelijk dat de techniek straks in het hele land navolging krijgt. Andere waterbedrijven kwamen al langs op de IJsselkade om te kijken hoe de techniek werkt. Een klantbelevingsonderzoek maakte ook onderdeel uit van de pilot. In de nabijgelegen Spaarnestraat vertelde een bewoner: “Het is gebruikelijk dat bij het vervangen van de leidingen de straat twee tot drie keer open gaat, maar bij ons was het binnen een dag gepiept. ’s Ochtends werd de straat opengebroken en toen ik ’s middags van mijn werk thuiskwam, lagen de stoeptegels er alweer in.”

Omdat het water tijdelijk wordt afgesloten en het een pilot is, stelt Dunea waterflessen beschikbaar voor de bewoners. De volgende ochtend wordt het water bemonsterd volgens de standaardprocedure. De bewoners krijgen het advies om de eerste vier dagen alleen water te drinken nadat het is gekookt. “Ik hoorde van mijn vrouw dat het water slechts kort is afgesloten”, aldus de bewoner. “Ze hielden ons netjes op de hoogte.”

Peter en André brengen de blaas in de buis. (Foto: Dunea)

Rotterdam, Maastunnel

Ingang Maastunnel (foto: Rijksdienst voor het Cultureel Erfgoed)

De Maastunnel in Rotterdam is niet alleen de oudste grote verkeerstunnel van Nederland, het is ook de eerste Nederlandse tunnel die is gebouwd volgens de afzinkmethode. De tunnel kruist de Nieuwe Maas en bestaat uit een rechthoekige koker waarin verschillende tunnelbuizen zijn gecombineerd. Naast twee buizen van circa zeven meter breed met twee rijstroken voor het autoverkeer gaat het om twee kleinere buizen voor fietsers en voetgangers. Deze twee buizen zijn bijna vijf meter breed en liggen boven elkaar. Ze zijn bereikbaar via roltrappen.

De aanleg van de Maastunnel was nodig om de bereikbaarheid van de Maasoevers te verbeteren, zonder hinder te veroorzaken voor het scheepvaartverkeer. De tunnel is in de eerste plaats een indrukwekkend civieltechnisch werk. Door de markante ventilatiegebouwen, de toegangsgebouwen en de fiets- en voetgangerstunnel, vormgegeven door stadsarchitect Van der Steur, is de tunnel ook een opmerkelijke architectonische verschijning.

Techniek

De toepassing van rechthoekige tunnelelementen was in 1937 een wereldprimeur. Tot dan toe werden voor afzinktunnels ronde elementen gebruikt met een diameter van maximaal tien meter. Men vreesde namelijk dat rechthoekige tunnels niet goed zouden zijn te funderen. Bij de Maastunnel werd het risico van een gebrekkige fundering geminimaliseerd door een nieuwe techniek toe te passen, het zogeheten onderspoelen. Na plaatsing van de elementen werd er zand onder en naast de tunnel gespoten om eventueel aanwezige holle ruimten onder de tunnel op te vullen. Deze techniek is sindsdien steeds verder verbeterd en wordt nog steeds gebruikt bij afzinktunnels, zoals bij de afzinktunnel onder het IJ van de Noord/Zuidlijn.

De negen afgezonken elementen van de Maastunnel zijn ruim zestig meter lang, negen meter hoog en vijfentwintig meter breed. Ze zijn gebouwd in een droogdok en vervolgens via water naar de tunnellocatie gesleept. Daar zijn ze afgezonken in een gebaggerde sleuf van maximaal drieëntwintig meter diep.

De Maastunnel heeft enkele opvallende kenmerken. Zo is rond de betonnen constructie een stalen bekleding gemaakt om lekkage te voorkomen. Een ander opvallend kenmerk is dat de ventilatiekanalen niet boven de tunnelbuizen zitten, maar onder het wegdek.

Ventilatiegebouw. (Foto: Rijksdienst voor het Cultureel Erfgoed)

Renovatie

Tijdens onderhoud aan de ventilatiekanalen in 2011 bleek dat ze waren aangetast door betonrot, evenals de vloer van de autotunnels. Gezien de ernst van de aantasting dacht de gemeente Rotterdam in eerste instantie dat de tunnel in 2015 een jaar volledig dicht zou moeten voor herstel. Nader onderzoek toonde aan dat de schade minder ernstig was en er meer tijd was voor de herstelwerkzaamheden.

In de zomer van 2017 is de renovatie en restauratie gestart. De gemeente reserveerde hiervoor 262 miljoen euro. De dochterondernemingen Croon, Wolter & Dros (nu Croonwolter&dros) en Mobilis van bouwgroep TBI hebben de werkzaamheden uitgevoerd. Op maandag 19 augustus 2019 was de renovatie en restauratie klaar en gingen beide tunnelbuizen weer open voor verkeer.

Een van de uitdagingen was dat de ruim zeventig jaar oude tunnel een rijksmonument is. Dat betekende onder meer dat de uitstraling van de tunnel behouden moest blijven en authentieke elementen niet verloren mochten gaan. Bij de renovatie zijn onder meer de bestaande rijvloeren verwijderd en vervangen door nieuwe. Ook zijn er nieuwe installaties aangebracht voor bijvoorbeeld de ventilatie, de intercominstallatie en de verkeersdetectie en -signalering. Dit was nodig om te voldoen aan de wettelijke eisen op het gebied van tunnelveiligheid. De oorspronkelijke ventilatie is bijvoorbeeld vervangen door moderne langsventilatie. Op de plek van de ventilatoren is het dak verhoogd, zodat de ventilatoren uit het zicht hangen en het oorspronkelijke uiterlijk van de tunnel zoveel mogelijk behouden blijft. De bedieningscentrale is verplaatst naar de gemeentelijke verkeerscentrale bij het knooppunt Kleinpolderplein.

Voorafgaand aan de renovatie vonden in de eerste drie maanden van 2016 voorbereidende werkzaamheden plaats. Het ging hierbij om het verwijderen van de plafondcoating en de zwakke plekken in het beton van de plafonds. Ook de zogeheten schampkanten – het onderste deel van de tunnelwanden – zijn weggehaald. Er werd nieuw beton aangebracht en de geroeste wapening is gezandstraald en opnieuw gecoat. Deze werkzaamheden zijn ’s nachts en in de weekenden uitgevoerd.

Tijdens de voorbereidende en de renovatiewerkzaamheden was steeds één tunnelbuis afgesloten voor verkeer. De andere tunnelbuis was alleen te gebruiken voor verkeer van zuid naar noord. Hiervoor is gekozen om de binnenstad en het Erasmus Medisch Centrum bereikbaar te houden. Verkeer van noord naar zuid werd omgeleid via de Erasmusbrug, de Willemsbrug en de ring.

De monumentale voetgangers- en fietstunnel bleven tijdens de renovatiewerkzaamheden gewoon open. De renovatie van deze twee tunnels is in november 2019 gestart. De werkzaamheden aan de fietstunnel duren ongeveer zeven maanden en die aan de voetgangerstunnel circa elf maanden. Beide tunnels worden ingrijpend gerenoveerd en gerestaureerd. Zo wordt de vloer van de voetgangerstunnel volledig vervangen en wordt de vloer in de fietserstunnel opgeknapt. Daarnaast wordt alle betegeling hersteld, wordt de natriumverlichting vervangen door ledverlichting en worden nieuwe camera’s  en omroepinstallaties aangebracht. Verder wordt de PCB-houdende coating op het plafond van de tunnel en de wanden en het plafond bij de roltrappen verwijderd en vervangen door een nieuwe coating. Gedurende de renovatie van de voetgangers- en fietstunnel kunnen voetgangers en fietsers gebruikmaken van een gratis veerdienst.

'Allemaal in het shirt van de alliantie'

De gemeente Amsterdam kiest voor de renovatie van haar wegtunnels en de verkeerscentrale voor een integrale aanpak binnen het programma ‘Aanpak wegtunnels Amsterdam’. Ronald Siebrand, directeur van het programma: “We hebben twee doelstellingen: voldoen aan de tunnelwetgeving (Warvw) en het vervangen van installaties die aan het eind van hun levenscyclus zijn, zodanig dat de veiligheid en beschikbaarheid daarvan ook in de toekomst aantoonbaar geborgd zijn.”

“Het feit dat de renovatie van twee tunnels en de vernieuwing van de verkeerscentrale in één programma zijn ondergebracht, biedt de mogelijkheid voor een end-to-end-benadering”, zegt Siebrand. “Ons doel is te komen tot een integrale aanpak, uniformiteit en toekomstbestendigheid, om zo de bewaking, de bediening en het onderhoud beter te kunnen regelen. Daarbij willen we ervoor zorgen dat alle activiteiten ook steeds door de bril van beheer en onderhoud worden bekeken. Dit doen wij in nauwe samenwerking met de tunnelbeheerorganisatie. Daarnaast hebben we onlangs een samenwerkingsovereenkomst gesloten met Tunnel Engineering Consultants (TEC) en Covalent.

Het programma duurt tot medio 2025. “Tegen die tijd zijn de gerenoveerde tunnels dus niet alleen toekomstbestendig; het programma wil eraan bijdragen dat het beheer en onderhoud dan ook tot minder hinder leidt. Er ligt dan een  uniform informatiemodel ten behoeve van de beheerorganisatie dat is gebaseerd op digitaal aantonen”, aldus Ronald Siebrand.

Vijf wegtunnels en een verkeerscentrale

In totaal heeft Amsterdam vijf wegtunnels. Met 1.500 meter (gesloten deel) is de Piet Heintunnel de langste. De IJ-tunnel is de drukste. De Arenatunnel is in theorie een onderdoorgang, maar wordt nu als tunnel behandeld gelet op het bijzondere risicoprofiel vanwege de bovengelegen Johan Cruijff ArenA met een capaciteit van ruim 54.000 bezoekers. De Michiel de Ruijtertunnel achter het Centraal Station is beheertechnisch de meest complexe tunnel vanwege het grote aantal functies dat op die plek bijeenkomt. De Spaarndammertunnel is de jongste tunnel in het areaal van de gemeente Amsterdam.

Van de genoemde tunnels voldoen de IJ-tunnel, waarvan de renovatie onlangs is afgerond, de Spaarndammertunnel en de Michiel de Ruijtertunnel per 1 mei 2019 aan de tunnelwetgeving (Warvw). De Michiel de Ruijtertunnel maakt wel deel uit van de landelijke opgave om de brandwerendheid van het beton te verhogen. In de Arenatunnel moeten technische installaties worden aangepast, maar deze hoeft niet te voldoen aan de Warvw, omdat het formeel geen tunnel is.

Los van de nieuwe wetgeving wil Amsterdam de verkeerscentrale, gevestigd in het zuidelijk ventilatiegebouw van de IJ-tunnel, vernieuwen en toekomstbestendig maken. De Piet Heintunnel voldoet nog niet aan de tunnelwetgeving zoals die per 1 mei 2019 van kracht is geworden. In nauw overleg met de tunnelbeheerder en de Omgevingsdienst Noordzeekanaalgebied zijn beheersmaatregelen genomen, waaronder het weren van vrachtverkeer, waardoor de tunnel voor het overige verkeer open kan blijven. De renovatie van de Piet Heintunnel start in het voorjaar van 2021.

Samenwerking

Ronald Siebrand: “Onze primaire vraag bij de uitvoering van de projecten is steeds: wat doet het met de stad en de bereikbaarheid? Vandaar ook de opgave om het programma in samenspraak met de stadsregisseur vorm te geven. We hebben in Amsterdam immers ook nog het project Zuidasdok, de werkzaamheden aan bruggen en kades en nog veel meer projecten die effect hebben op de bereikbaarheid van de stad. Afstemming is dus essentieel. Dat doen we overigens ook met partijen buiten de gemeente. Een van de voorbeelden is de samenwerking met het tunnelprogramma van COB om geleerde lessen toe te kunnen passen.”

Piet Heintunnel als model

De renovatie van de Piet Heintunnel is het eerste project binnen het programma dat gestart is met de aanbesteding. Het feit dat de Piet Heintunnel per 1 mei 2019 niet aan de wetgeving voldoet, zet druk op het project. Tegelijkertijd moeten geleerde lessen bij de Piet Heintunnel ook worden toegepast in de volgende projecten binnen het programma. Ronald Siebrand: “We verkeren nu in een gedoogsituatie. Dat betekent dat we niet op onze handen kunnen gaan zitten. Anderzijds willen we de renovatie van die tunnel goed voorbereiden en ons niet laten verleiden tot een aanpak waar we later de wrange vruchten van moeten plukken.” Amsterdam kiest voor de aanbesteding van de renovatie van de Piet Heintunnel voor een vergaande samenwerking in een alliantiemodel, waarbij opdrachtgever en opdrachtnemer de risico’s gezamenlijk dragen. “Als dat goed bevalt, is het logisch dat we het ook bij de volgende projecten zo gaan doen”, zegt Ronald Siebrand.

‘Dat betekent dat er ruimte is om gemotiveerd af te wijken en dat bijstellingen mogelijk zijn, zowel naar beneden als naar boven.’

Eind april 2019 werd een marktinformatiedag georganiseerd waar de alliantie-aanpak werd geïntroduceerd en toegelicht. Daaruit blijkt dat marktpartijen uitkijken naar deze aanpak. Men ziet het als een kans, maar tegelijkertijd zijn er nog heel wat vragen over hoe het werkt in de praktijk. Siebrand: “Het prijsdenken overheerst nog. We hebben uitgelegd dat marktpartijen een ‘due diligence’ mogen doen op ons dossier. Dat betekent dat er ruimte is om gemotiveerd af te wijken en dat bijstellingen mogelijk zijn, zowel naar beneden als naar boven. Daarmee laten we zien dat het niet per se om de laagste prijs gaat, maar dat we vooral kijken naar robuustheid. Je wilt naar een situatie waarin je samen de klus klaart. We willen uit de claimcultuur stappen. Als zich een onvoorziene situatie voordoet die kosten met zich meebrengt dan is dit niet alleen een probleem van een aannemende partij of van de gemeente, maar van de gehele alliantie. Tegelijkertijd oormerken we een deel van het alliantiebudget voor herstel van zaken die voortkomen uit de alliantieperiode. Dat betekent voor de alliantiepartners dus een verplichting voor, naar verwachting, vijf tot zeven jaar. Werken in een alliantie betekent commitment. Op het niveau van de directies, maar ook op de werkvloer. We bepalen samen of mensen binnen de projectorganisatie goed functioneren. En kwaliteitsborging vindt plaats door een derde partij die we samen benoemen.”

Werk in de Piet Heintunnel. (Foto: Richard Mouw)

Matrixorganisatie

“In dat proces is het belangrijk dat we blijven afstemmen”, vervolgt Ronald Siebrand. “We zullen steeds alle betrokken partijen vragen onze voorkeursvariant te toetsen. Zo kijken we bij het controleren of alles aan de gestelde eisen voldoet ook al naar zaken als testen, overdracht en opleiden. Natuurlijk altijd met de gedachte dat na oplevering het tunnelsysteem efficiënt beheerd kan worden. Voor die afstemming is wel nodig dat je elkaars taal spreekt en elkaar op blijft zoeken. Binnen het programma kiezen we voor een matrixorganisatie die op hoofdlijnen vier disciplines omvat: omgeving en communicatie, integraal ontwerp, uitvoering en commissioning. De disciplineleiders zijn vertegenwoordigd in het managementteam. Een bewuste keuze waarmee we integraal werken willen bevorderen.”

Visuele virtualisatie

De programmatische aanpak wordt gefundeerd op verregaande digitalisering. Rik Teuben, manager Testen en beproeven van het programma: “We zijn van nature geneigd vooral naar de techniek te kijken. Maar je wordt uiteindelijk afgerekend op de beheerbaarheid, beschikbaarheid en veiligheid van het tunnelsysteem. Dat betekent onder andere dat je fouten en misverstanden – samen met de tunnelbeheerder – zo vroeg mogelijk in het proces wilt wegnemen. Werken met een digitale tunneltweeling maakt de gesprekken daarover veel makkelijker. Je kunt met visuele virtualisatie laten zien waar je mee bezig bent. Zo kun je bijvoorbeeld verkeersstromen simuleren of laten zien hoe calamiteiten worden afgehandeld. Dat helpt ook om het bevoegd gezag en hulpdiensten comfort te geven.”

‘We zijn gewend van een document naar een model te werken, maar andersom is beter.’

“We willen naar projecten die hinderarm verlopen”, vervolgt Rik Teuben. “De basisgedachte daarbij is: testen kost niet veel tijd, het oplossen van de fouten wel. Kortom, we willen de fouten zo vroeg mogelijk boven tafel halen zonder dat de fysieke tunnel daarbij nodig is. We zijn gewend van een document naar een model te werken, maar andersom is beter. En kijkend naar de toekomst, de gebruiksfase, betekent dat we de tunnelbeheerder bij testen betrekken, zodat we maximaal gebruikmaken van hun kennis en ervaring en nooit voor een voldongen feit worden geplaatst.”

Ruimte voor exploratie

“Bij het maken van de modellen gaan we uiteraard uit van de eisen”, zegt Rik Teuben. “Maar we creëren ook ruimte voor exploratie. Je wilt waar mogelijk kunnen anticiperen op veranderingen en ervoor zorgen dat als je onderweg een andere visie tegenkomt, je die nog kunt testen op een moment dat veranderingen nog vrij eenvoudig doorgevoerd kunnen worden. Daarmee is het meteen ook een validatiemethode die past in het tijdperk waarin agility (aanpassingsvermogen) steeds belangrijker wordt. Het gaat niet alleen om checken, maar ook om de mogelijkheid om de kwaliteit grondig te onderzoeken en risico’s in kaart te brengen in een testtraject waarin de stakeholders nadrukkelijk participeren.”

Bij het bouwen van effectieve digitale modellen maakt de programmaorganisatie ook gebruik van ervaringen uit het verleden, zoals de reeds voltooide renovatie van de IJ-tunnel en ervaringen buiten de gemeente Amsterdam. Ronald Siebrand: “Opnieuw het wiel uitvinden is heel inefficiënt. We sluiten aan bij de COB-projecten Hinderarm renoveren en Digitaal aantonen. We kijken ook in de keuken bij collega’s in Rotterdam en Den Haag en bij Rijkswaterstaat. Oude tunnels zijn stil, maar hebben wel degelijk wat te vertellen. We kunnen data uit die projecten opwerken tot informatie voor ons programma.”

De hekken kunnen bíjna open

Na twee jaar bouwen en renoveren, heropent het Mauritshuis op 27 juni 2014 zijn deuren. Het museum is verdubbeld in oppervlakte door een ondergrondse uitbreiding naar het gebouw aan de overkant van de straat, Plein 26. Een prestatie die vorig jaar werd beloond met een nominatie voor de Schreudersprijs.

Ondanks de grondige verbouwing is het karakter van het Mauritshuis nog als vanouds. De uitstraling en de unieke huiselijke sfeer blijven door het ontwerp van Hans van Heeswijk architecten behouden. De meest in het oog springende verandering is de verplaatsing van de hoofdingang terug naar het voorplein. Bezoekers gaan niet meer via de oude dienstingang naar binnen, maar dalen met trap of lift af naar een lichte foyer die ondergronds de twee gebouwen met elkaar verbindt. Hierdoor kunnen voortaan de hekken voor het museum worden geopend, een langgekoesterde wens. Verder blijft het straatbeeld ongewijzigd dankzij het ondergronds realiseren van de foyer. In de nieuwe ruime en lichte ontvangsthal bevinden zich de kassa, de garderobe, een informatiebalie en een museumshop.

De uitbreiding was een complexe en spectaculaire onderneming. Zo is de kelder van Plein 26 verlaagd en is de bestaande kelderwand doorgebroken om de twee rijksmonumenten ondergronds aan elkaar te koppelen. ABT heeft het constructieve en geotechnische ontwerp van de renovatie en nieuwbouw verzorgd, en het Mauritshuis geadviseerd bij het realiseren van zo’n complex project op een klein oppervlak. Hiertoe zijn alle bouwstappen gevisualiseerd en in een schematische planning weergegeven. Hierdoor sloot het constructieve advies goed aan op de bouwwijze.

Dit was de Onderbreking Assetmanagement

Bekijk een ander koffietafelboek: