Loading...

De Onderbreking

Tunnels en veiligheid

Tunnels en veiligheid

Probleemloos na uitstel openstelling

Noord-Holland, Waterwolftunnel

Visie van… Arjan Verweij

Werkbare oplossingen door integrale aanpak veiligheid

Infra die aan de wet voldoet, voelt niet automatisch veilig

Maastunnel: veilig, functioneel monument

Amsterdam, Eerste Coentunnel

Zwemmen in een schuilkelder

Zo kan het ook: toffe tunnels

Kennisbank

Tunnels en veiligheid

Tunnels zijn wellicht de bekendste voorbeelden van ondergrondse bouwwerken. Het begon in Nederland met afgezonken tunnels om watergangen te kruisen, inmiddels worden ook boor- en landtunnels breed toegepast. Ontwikkelingen in de praktijk vragen om ontwikkeling in kennis en kunde. Ook op het gebied van veiligheid: ondergronds is het waarborgen van veiligheid vaak complexer dan boven de grond.

Nederland is specialist in afgezonken tunnels. Toch is er ook op dit gebied nog voldoende bij te leren. Gezien de hoge leeftijd van de meeste Nederlandse zinktunnels, is renovatie bijvoorbeeld een actuele en dringende opgave, waarover nog veel vragen leven. Daarnaast neemt de complexiteit bij het realiseren van geboorde tunnels toe: in stedelijke gebieden is het prettig als wegen en spoorlijnen ondergronds gaan, maar er is weinig ruimte om te bouwen en de hinder moet minimaal zijn. We willen in complexere situaties ondergronds bouwen, nog dieper en nog dichter bij de bestaande bebouwing.

Veiligheid is dan ook onlosmakelijk met ondergronds bouwen verbonden. Het werken in de grond heeft al snel effect op de omgeving. Bovendien moet de constructie na oplevering veilig te gebruiken zijn. Dat is op zichzelf al een opgave, maar een bijkomende uitdaging is het vooraf aantoonbaar maken van veilig gebruik, en dat in een complex belangenveld. De laatste jaren leidde dat bij tunnels soms tot problemen. Samen met het netwerk wil het COB ervoor zorgen dat nieuwe tunnels voortaan opengaan zonder gedoe.

Salland-Twentetunnel functioneert probleemloos na uitstel openstelling

Op 29 augustus 2015, bijna negen maanden later dan gepland, ging de Salland-Twentetunnel in Nijverdal open voor het wegverkeer. Daarmee is de gecombineerde spoor- en autotunnel volledig in gebruik. Het treinverkeer rijdt al sinds voorjaar 2013 door de tunnel. Eelco Negen van Rijkswaterstaat legt uit wat er aan de hand was bij de autotunnel, hoe de problemen zijn opgelost en wat de leerpunten zijn.

“Volgens de oorspronkelijke planning zou de autotunnel half december 2014 opengaan”, vertelt Eelco Negen, die sinds maart 2015 projectmanager is van de combitunnel. “Dat was een heel krappe planning. Eind oktober werd duidelijk dat we die niet zouden halen. Alle tunneltechnische en verkeerstechnische installaties waren inmiddels aangebracht en we waren volop bezig met testen. Daarbij bleek dat de verbinding tussen de installaties en de verkeerscentrale in Wolfheze – van waaruit de tunnel bediend moest worden – niet functioneerde. Alsof je internetverbinding eruit ligt, maar dan in het groot met eindeloos veel ingewikkelde softwareprotocollen die niet goed communiceren met de ‘routers’. Daarmee hadden we een serieus probleem, omdat we vanuit de verkeerscentrale alle techniek en procedures nog moesten testen. Door de verbindingsproblemen kon dat niet, en het ontwerp bood ook niet de mogelijkheid om de testen lokaal uit te voeren.”

Terug naar af

“Er zat dan ook niets anders op dan terug naar af te gaan en alle instellingen, prioriteringsregels en veiligheidsprotocollen stap voor stap te doorlopen en te testen. Begin februari 2015 waren we daarmee klaar en hadden we een betrouwbare verbinding die goed werkte met alle software en tunnel- en verkeerstechnische installaties. Pas toen konden we het resterende testprogramma doorlopen.”

“Een dergelijk testprogramma is heel uitgebreid”, legt Negen uit. “Het bestaat in grote lijnen uit twee onderdelen: testen gericht op de techniek en testen waarbij wordt gekeken naar de samenhang tussen de techniek, de procedures en de bediening door de tunneloperators. Bij de technische testen ga je eerst na of elke deelinstallatie in de tunnel het doet. Als dat het geval is, kijk je of het integrale systeem functioneert. Dat is een enorme klus, aangezien er in de tunnel meer dan vijftig verschillende installaties zitten. Bij een calamiteit, zoals een autobrand in de tunnel, moeten die installaties perfect met elkaar samenwerken. De slagbomen om de tunnel af te sluiten kunnen bijvoorbeeld pas worden neergelaten als de verkeerslichten voor de slagbomen op rood zijn gezet. Ondertussen moet de blusinstallatie in gereedheid zijn gebracht, moet het verlichtingsniveau omhoog en moeten de ventilatoren de vrijkomende rook in de goede richting gaan afvoeren. Al deze samenwerkingsstappen moesten we controleren. Vervolgens zijn we de tunneloperators gaan trainen en hebben we alle procedures en de bediening getest.”

Systematisch

“De essentie van een testprogramma is protocollen volgen en uiterst systematisch werken: je moet iedere stap zorgvuldig doorlopen, opschrijven wat eruit komt en vervolgens eventuele fouten herstellen. Daardoor is het testen een vrij langdurig traject. Daar zit natuurlijk niemand op te wachten als een project al is uitgelopen. Ik heb echter de ervaring dat het overslaan van stappen in een later stadium tegen je werkt. De kans neemt bijvoorbeeld enorm toe dat je dan na de openstelling met allerlei kinderziektes te maken krijgt. Tegelijkertijd begrijp ik ook wel dat een projectorganisatie onder druk van de omgeving soms probeer t om op een creatieve manier de duur van de testperiode te verkorten. Dat is prima zolang het er maar niet toe leidt dat stappen worden overgeslagen. Zo ben ik erg blij dat we in Nijverdal het testprogramma zorgvuldig en volledig hebben doorlopen. Ik ben er namelijk van overtuigd dat dit ervoor heeft gezorgd dat de tunnel sinds de opening probleemloos functioneert en goed te bedienen is.”

“Uiteindelijk hebben we eind juni 2015 de testperiode afgerond, met als laatste onderdeel een eindoefening met alle hulpdiensten. Daarna moesten we alleen nog de openstellingsvergunning krijgen. Een week na de oefening hebben we daarvoor alle resterende documenten aangeleverd. Samen met de gemeente Hellendoorn en alle andere betrokken partijen hebben we vervolgens een datum voor de opening vastgesteld, rekening houdend met de verschillende stappen van het vergunningverleningstraject, de zomervakantie en nog wat speling voor onverwachte ontwikkelingen. Zo zijn we uitgekomen op 29 augustus 2015. Het in gezamenlijk overleg vaststellen van de openingsdatum vind ik erg belangrijk, omdat je hiermee voorkomt dat er verschillende verwachtingen ontstaan.”

Veranderingen

Terugkijkend op het project ziet Negen duidelijk waar het aan schortte: “De hele krappe planning betekent dat je zeer weinig speelruimte hebt; er hoeft maar iets heel kleins mis te gaan om uit te lopen. Daar komt bij dat er sinds de start van het project nog allerlei grote veranderingen zijn doorgevoerd. Denk aan de invoering van de landelijke tunnelstandaard en extra eisen op het gebied van cybersecurity. Mijn ervaring is dat dit soort wijzigingen bij ICT-projecten dodelijk zijn. Het is een beetje zoals met betonnen constructies. Als je beton hebt gestort, kun je geen wapeningsstaal meer toevoegen. Bij de ontwikkeling van software geldt min of meer hetzelfde. Heb je eenmaal een systeemontwerp vastgesteld en ben je begonnen met het softwareontwerp, dan is het uiterst moeilijk om nog veranderingen door te voeren.”

“Besluit je toch tot wijzigingen, dan moet je heel goed analyseren welke gevolgen die kunnen hebben”, zegt Negen. “Wat zijn bijvoorbeeld de extra risico’s en wat betekenen die voor de planning? In de praktijk wordt zo’n impactanalyse lang niet altijd gemaakt. En als hij wel wordt gemaakt, wordt toch nog vaak vastgehouden aan de oorspronkelijke planning. Voor een deel hangt dat samen met de optimistische blik van ingenieurs. Zij gaan er meestal vanuit ‘dat het ondanks de veranderingen wel zal lukken’. Daarbij verliezen ze uit het oog dat de risico’s ondertussen veel groter zijn geworden. Ik denk dan ook dat we op dat vlak echt kritischer moeten worden en ons minder moeten laten verleiden om vast te blijven houden aan veelal te strakke planningen.”

Waterwolftunnel

De Waterwolftunnel is onderdeel van de vernieuwde provinciale weg N201 tussen Hoofddorp en Amstelhoek. Hij gaat onder de Ringvaart van de Haarlemmermeer door en ligt op de grens van de gemeenten Aalsmeer en Haarlemmermeer.

(Foto: Flickr/European Roads)

De Waterwolftunnel heeft twee gescheiden buizen met elk twee rijstroken en een middentunnelkanaal, dat onder meer dient als vluchtroute. In totaal is de tunnel 1.450 meter lang. Het gesloten deel is 670 meter lang en gaat aan beide kanten over in een open tunnelbak van 300 meter. Aan de oostzijde is er na de open tunnelbak nog een korte tunnel met een lengte van 80 meter.

Slim

Bij de bouw van de tunnel heeft de aannemerscombinatie steeds voor slimme, economisch aantrekkelijke oplossingen gekozen. Voor de aanleg is met damwanden een bouwput gemaakt. Hierin is met onderwaterbeton een vloer gestort die onder een helling ligt. Door in deze vloer wapening aan te brengen, was een aparte constructievloer niet nodig en kon de tunnel minder diep worden aangelegd. De betonnen zijwanden van de tunnel zijn relatief licht uitgevoerd met een dikte van 0,4 meter. Ze maken de constructie waterdicht en verhogen de brandwerendheid. Ze zijn er niet op berekend om de gronddruk tegen te houden. Daarvoor zorgen de stalen damwanden.

De tunnel kruist niet alleen de Ringvaart, maar ook het Bovenlandengebied, een moeraszone waarin de beschermde rugstreeppad leeft. Om te zorgen voor voldoende leefgebied voor deze zeldzame pad is een deel van het tunneldak uitgevoerd als ecologische zone met veeneilandjes. (Foto: Heijmans)

Veiligheid

De Waterwolftunnel is de eerste provinciale tunnel in Noord-Holland die aan de wet Aanvullende regels veiligheid wegtunnels (Warvw) moest voldoen. Reden voor de provincie Noord-Holland en de betrokken gemeenten (Aalsmeer en Haarlemmermeer) om vanaf het begin sterk in te zetten op veiligheid. Ze wilden namelijk voorkomen dat er vertraging zou optreden als gevolg van het niet verlenen van een openstellingsvergunning. Daarom is onder andere gekozen voor een intensief traject rond opleiden, trainen en oefenen (OTO). Alle directbetrokkenen hebben een opleiding en training gehad en hebben vervolgens uitgebreid geoefend, deels met 3D-simulatieprogramma’s.

Doordachte samenwerking bij calamiteiten

Stad van de toekomst

“De druk op de stedelijke regio’s neemt toe. Daarom moeten we slim gebruikmaken van ruimte en technologie. De nieuwe uitdagingen die we daarbij tegenkomen, kunnen we aan als we openstaan voor nieuwe technologieën en we de mensen die een bijdrage kunnen leveren ook daadwerkelijk betrekken.”

Bij Sweco werken we aan de stad van de toekomst. We creëren samen met klanten en partners een veilige, gezonde en comfortabele omgeving, bedenken oplossingen om de negatieve effecten van klimaatverandering tegen te gaan en werken aan een volledig energieneutrale en circulaire samenleving.

Al jaren bouwen we tunnels om verbindingen te leggen. Steeds meer leveren de nieuwe tunnels een bijdrage aan een duurzame en leefbare samenleving. Ze zorgen voor een veilige, gezonde en comfortabele omgeving. Door nieuwe technologieën toe te passen, zijn de mogelijkheden voor tunnels enorm; zeker als we technologieën koppelen aan communicatiesystemen en activiteiten in de slimme stad. De oudere tunnels kunnen een geheel nieuw leven krijgen; de nieuwe tunnels zullen klaar zijn voor de toekomst en mee-ontwikkelen in een snel veranderende wereld.

Dit werkt echter alleen als we openstaan voor nieuwe technologieën, als we tunnels niet meer zien als objecten op zichzelf maar als onderdeel van netwerken, en als we belangen van betrokkenen meenemen en waarderen. Het betekent dat er telkens nieuwe uitdagingen zijn, dat er meer partijen bij betrokken zijn en dat er nieuwe technologieën verschijnen. Het COB is de plek waar partijen elkaar treffen en door kennisdeling en -ontwikkeling nieuwe mogelijkheden ontdekken. Door het COB worden deze mogelijkheden werkelijkheid.

Dat is waar ik aan wil bijdragen. Ik geloof dat er veel mogelijk is als partijen samenwerken, als iedereen vanuit zijn eigen betrokkenheid de mogelijkheden ziet en erom wordt gewaardeerd. Maar ook als iedereen die een bijdrage kan leveren ook daadwerkelijk betrokken is; vanuit een belang, een goed idee of een nieuwe technologie. Ik geloof dat we pas dan tot écht vernieuwende tunnels en optimaal ondergronds ruimtegebruik komen, passend bij de stad van de toekomst.”

Arjan Verweij is sinds 1 september 2016 hoofd van de afdeling Waterbouw bij ingenieursadviesbureau Sweco. Sweco werkt samen met haar klanten aan het ontwerpen en ontwikkelen van de samenlevingen en steden van de toekomst. Sinds 1 december 2017 is Arjan tevens coördinator binnen het COB.

Foto: Vincent Basler

Werkbare oplossingen door integrale aanpak veiligheid

Voor het Zuidasdok is een integraal veiligheidsplan ontwikkeld. Bij de totstandkoming zijn verschillende belangen en disciplines bij elkaar gebracht. Jasper Nieuwenhuizen, voorzitter van de werkgroep integrale veiligheid van de projectorganisatie Zuidasdok: “Het unieke is dat meerdere systemen integraal samenwerken. De veiligheidsplannen van drie opdrachtgevers komen hier bij elkaar. Er wordt niet naar ieder object afzonderlijk gekeken, maar naar het gebied als geheel.”

Jasper Nieuwenhuizen en Peter Bals, senior adviseur Proactie bij de Brandweer Amsterdam-Amstelland, waren al in de verkenningsfase bij het project betrokken en maken ook nu nog deel uit van de werkgroep Integrale Veiligheid, waarin naast de initiatiefnemers ProRailRijkswaterstaat en de gemeente Amsterdam ook de gebruikers zitting hebben (NSGVB, hulpdiensten en bevoegd gezag).

Jasper Nieuwenhuizen noemt de passagiersstromen bij het station als voorbeeld voor de integrale aanpak. “Het veiligheidsplan van de NS strekt zich uit tot de deur van het station. Dat van het gemeentelijk vervoersbedrijf (GVB) begint bij de halte. Beide zijn goed voor hun gebied, maar sluiten niet automatisch op elkaar aan. In het Integraal Veiligheidsplan (IVP) gaan we uit van voetgangersstromen in het hele gebied en dus niet per object of discipline.”

Op eenzelfde manier wordt naar een groot aantal veiligheidsaspecten gekeken, variërend van constructieve veiligheid tot sociale veiligheid en van tunnelveiligheid tot waterveiligheid (zie kader onderaan). Jasper Nieuwenhuizen: “We kijken in eerste aanleg naar het reduceren van gevaren. Op basis daarvan voeren we verbeteringen door. Dat leidt tot steeds robuustere plannen. Hierdoor zijn in de uitvoeringspraktijk waarschijnlijk minder wijzigingen nodig. Zo proberen we faalkosten te elimineren.”

Preventie in de planfase

Bij het reduceren van gevaren is de praktische inbreng van brandweer en hulpdiensten onmisbaar. Tegelijkertijd is het voor dergelijke organisaties zeker niet vanzelfsprekend dat zij zich mengen in de planfase van een project. Peter Bals: “Bij de brandweer hebben we net een strategische reis achter de rug die ertoe leidt dat we niet alleen ‘na de vlam’ willen kijken, maar ook ‘voor de vlam’. De kern van de brandweer is dat we in actie komen als het eigenlijk al te laat is. Dat wordt ook steeds duurder. Daar komt bij dat in het verleden in projecten vaak vertragingen ontstonden als gevolg van eisen van de brandweer. Door de brandweer heel vroeg in het proces te betrekken, kun je dat voorkomen.”

“Wij kunnen het abstracte denken van ontwerpers versterken vanuit onze concrete invalshoek”, vervolgt Bals. “Knelpunten kunnen we in de contracteringsfase oplossen. Zo kwamen we al vroeg tot de conclusie dat de bereikbaarheid voor brandweer en hulpdiensten tijdens de aanleg van de noordtunnel een groot knelpunt zou kunnen worden. Door het ontwerp en de fasering te optimaliseren is dit potentiële veiligheidsknelpunt in de voorfase al weggenomen Overigens zal de brandweer deze ‘stap naar voren’ ook in andere projecten gaan maken. We proberen deze werkwijze ook bij kleinere projecten in beeld te krijgen. Ideaal zou zijn als veiligheid al wordt meegewogen in de fase waarin een projectontwikkelaar een eerste voorstel aan de gemeente doet.”

Bestuurlijke consensus

De aanpak waarin zoveel disciplines in zo’n vroeg stadium bij het project zijn betrokken, is bijzonder. Al in 2009, toen vast kwam te staan dat de variant ‘Dok onder de grond’ gefaseerd zou worden uitgevoerd, werd tot de integrale aanpak besloten. In een bestuursovereenkomst, getekend door het ministerie van Infrastructuur en Milieu, de gemeente Amsterdam, de stadsregio Amsterdamen de provincie Noord-Holland, werd vastgelegd dat alle betrokken partijen gezamenlijk aan een integraal veiligheidsplan zouden werken. Jasper Nieuwenhuizen: “Voorheen is wel geëxperimenteerd met een Veiligheidseffectrapportage, maar dat is nooit goed van de grond gekomen. Deze aanpak voldoet wel aan de verwachtingen.”

Impressie dwarsdoorsnede van mogelijke eindsituatie voor A10 en spoor (trein en metro). Ook is de huidige A10 weergegeven. Dit wordt in de eindsituatie openbare ruimte. (Beeld: Projectorganisatie Zuidasdok)

Voorkomen dat het misgaat

Aanleiding voor het IVP was onder meer het rapport Sneller en beter van de commissie Elverding. Deze commissie onderzocht in 2008 waar het misgaat in de besluitvorming over infrastructuurprojecten en kwam met aanbevelingen om tot snellere en betere uitvoering van grote infrastructurele projecten te komen. De aanbeveling van de commissie Elverding om de besluitvorming te verbeteren door ‘een strakke procesbeheersing en kwaliteitsbewaking in alle fasen, onder meer door middel van een procesplan bij het begin van elke fase’, werd in Amsterdam opgepakt.

De belangen zijn dan ook groot. Zuidasdok is een enorm project, dat zich over een groot aantal jaren uitstrekt en in allerlei opzichten een enorme impact op de omgeving zal hebben. Jasper Nieuwenhuizen: “Het is een heel belangrijk gebied in Nederland, dat je niet zomaar ‘dicht’ kunt doen. Werken met de winkel open vergt extra voorbereidingen. Integraal kijken draagt bij aan het op een zo hoog mogelijk niveau bewaken van de kwaliteit.”

Definitie veiligheidsthema’s

Veiligheidsthema

Definitie

Arbeidsveiligheid

De veiligheid van personen die beroepshalve aanwezig zijn. In het kader van het IVP ligt de scope op bouwactiviteiten.

Bouwveiligheid

Veiligheid van werknemers en omstanders bij een bouwplaats (arbeidsveiligheid en omgevingsveiligheid bouw gecombineerd).

Brandveiligheid

Veiligheid van personen met betrekking tot brand en de gevolgen van brand voor een constructie.

Constructieve veiligheid

De veiligheid van personen met betrekking tot het bezwijken van of het ontstaan van schade aan een constructie.

Externe veiligheid transport

De kans om te overlijden als rechtstreeks gevolg van een voorval bij het transport van een gevaarlijke stof (via weg, water, spoor en/of leiding).

Fysieke veiligheid

Fysieke veiligheid is het gevrijwaard zijn (en het gevrijwaard voelen) van gevaar dat voortvloeit uit ongevallen van natuurlijke en gebouwde omgeving. Dit gevaar bedreigt materiële en immateriële zaken die de maatschappij waardevol acht, zoals leven en gezondheid van mens en dier, goederen, het milieu en het ongestoord functioneren van de maatschappij [NIFV].

Integrale veiligheid

Alle veiligheidsaspecten van een systeem in samenhang beschouwd.

Machineveiligheid

De veiligheid voor gebruikers en onderhouds- en bedienend personeel van machines.

Omgevingsveiligheid bouw

De veiligheid van personen, niet zijnde werknemers, in de omgeving van bouwwerkzaamheden.

Overige interne fysieke veiligheid

Interne fysieke veiligheid omvat alle veiligheidsthema’s van interne veiligheid, uitgezonderd sociale veiligheid. Toch blijven er enkele onderwerpen over:veiligheid bij ontruimingen zonder brand en veiligheid bij grote drukte (crowding).

Security

De bescherming of beveiliging van inrichtingen, personen en infrastructuur tegen moedwillige verstoringen.

Systeemveiligheid

De veiligheid van degenen die aanwezig zijn in het systeem (railverkeer, wegverkeer, vaarwegverkeer, etc.), zoals reizigers, personeel en overige aanwezigen in de nabijheid van het systeem.

Transferveiligheid

Veiligheid van de passanten en gebruikers die zich verplaatsen binnen de transferruimte van de Openbaar Vervoer Terminal OVT. Transferveiligheid valt binnen dit IVP uiteen in onderdelen van andere veiligheidsthema’s (onder meer brandveiligheid in de OVT, spoorwegveiligheid ter plaatse van perrons, veiligheid bij grote drukte, verkeersveiligheid binnen de OVT) en wordt niet separaat beschouwd.

Sociale veiligheid

De mate waarin mensen beschermd zijn en zich beschermd voelen tegen persoonlijk leed door misdrijven (criminaliteit), overtredingen en overlast door andere mensen.

Spoorwegveiligheid

Veiligheid op en rondom het spoorwegnet in Nederland, zowel van treinreizigers en passanten (wegen langs het spoor, spoorwegkruisingen) als werkers aan het spoor. De metro wordt beschouwd bij het thema spoorwegveiligheid.

Tunnelveiligheid

Veiligheid van personen in omsloten verkeersconstructies.

Waterveiligheid

Veiligheid van personen of objecten met betrekking tot hoog-water (ook als gevolg van het binnendringen in ruimten onder maaiveld).

Wegverkeersveiligheid

Veiligheid van verkeersdeelnemers, als gevolg van deelname aan het wegverkeer. Het openbaar vervoer bestaande uit bussen en trams wordt ondergebracht bij het thema wegverkeersveiligheid.

 

Infra die aan de wet voldoet, voelt niet automatisch veilig

Ron Beij en Ron Galesloot van de afdeling Risicobeheersing van de regionale brandweer Amsterdam-Amstelland stellen dat ‘veilig volgens de wet’ niet altijd voldoende is, vooral niet op locaties waar sprake is van meervoudig ruimtegebruik. Beij: “De veiligheid van de afzonderlijke infrastructurele componenten – denk aan een tunnel – is meestal wel goed geregeld, maar de integrale veiligheid van deze objecten in hun omgeving laat vaak te wensen over.”

Hun overtuiging dat er meer aandacht moet komen voor integrale veiligheid is ontstaan door hun betrokkenheid bij een aantal grote projecten, waaronder de Noord/Zuidlijn. “Vanuit de brandweer ben ik sinds 1995 bij dit project betrokken”, vertelt Beij. “Toen waren er vooral gesprekken over bouwplannen en contracten. Rond 2000 werd geleidelijk duidelijk hoe de metrolijn eruit zou gaan zien en in 2003 startte de uitvoering. Kort geleden, op 22 juli 2018, is de lijn in gebruik genomen.”

“De nieuwe metrolijn voldoet aan de wet, laat dat duidelijk zijn”, vervolgt Beij. “Alle besluiten over de metrolijn en de stations zijn echter voorafgaand aan de bouw, in de vorige eeuw, genomen. Dat betekent dat de toegepaste veiligheidsfilosofie twintig jaar oud is. Inmiddels denken we heel anders over risico’s en is er door de enorme ontwikkelingen op het gebied van ICT veel meer mogelijk. Ook hanteren we ondertussen andere uitgangspunten en zijn er modernere analyse-instrumenten beschikbaar. En dat is nog los van het feit dat wetgeving hoe dan ook altijd achterloopt op de actualiteit. Tegelijkertijd beseffen we dat het aanpassen van de veiligheidsvoorzieningen tijdens de uitvoering weinig kans zou hebben gemaakt. Tijdens de bouw ben je gebonden aan contracten. Je zou dan contracten moeten openbreken en daar zit niemand op te wachten. Daarom zijn aanpassingen uitgesteld tot na de openstelling.”

Er zijn weinig handvatten in de wet- en regelgeving om de integrale veiligheid tijdens de beheer- en gebruiksfase te onderbouwen.

“Daarmee wordt het niet ineens veel eenvoudiger. Sinds de openstelling hebben we te maken met andere partijen en andere mensen. Na twintig jaar overleggen we nu bijvoorbeeld niet meer met de projectorganisatie, maar met de beheerder van de metrolijn. Verder is er nu sprake van een ander gebruik én andere regelgeving. Zo is niet alleen het Bouwbesluit leidend bij metro’s; ook de Wet lokaal spoor is van toepassing. Deze wet regelt de spoorveiligheid, maar niet de veiligheid op de perrons of in de winkels op de stations. Terwijl een brand in een winkel verstrekkende gevolgen kan hebben. Dit betekent dat er weinig handvatten in de wet- en regelgeving zijn om de integrale veiligheid tijdens de beheer- en gebruiksfase te onderbouwen. Het zit er gewoon niet goed in. Daarin verschillen tram- en metrotunnels duidelijk van wegtunnels. Zo wordt bij wegtunnels de veiligheid na openstelling deels al geregeld met de Rarvw, de Regeling aanvullende regels veiligheid wegtunnels, en de Warvw, de Wet aanvullende regels veiligheid wegtunnels.”

Nieuwe risico’s

Galesloot vult aan: “Naast bovengenoemde problemen – een gedateerde veiligheidsfilosofie bij openstelling en het ontbreken van goede regelgeving voor de beheer- en gebruiksfase – constateren we ook dat de bestaande veiligheidsregelgeving nauwelijks rekening houdt met toekomstige ontwikkelingen en nieuwe risico’s. Denk aan de komst van zelfrijdende voertuigen, vraagstukken rond cybersecurity, de energietransitie en de koppeling tussen allerlei vormen van infrastructuur via het internet of things. Er komen bijvoorbeeld steeds meer elektrische auto’s. Dat is goed voor het milieu, maar als een accu van een Tesla in brand vliegt, kunnen wij die als brandweer nu niet blussen. Dat betekent dat je wellicht extra voorzieningen moet treffen om ook op termijn de veiligheid te kunnen garanderen.”

“Een andere ontwikkeling die van grote invloed is op de veiligheid van de openbare ruimte, is meervoudig ruimtegebruik”, stelt Galesloot. “Vooral in stedelijk gebied worden steeds vaker functies gecombineerd. Een voorbeeld zijn de stations Vijzelgracht en Rokin van de Noord/Zuidlijn, waar de ondergrondse ruimte boven de diepgelegen metrostations wordt benut voor de aanleg van parkeergarages. De vergunningen worden in dit soort gevallen per object verleend, terwijl de veiligheid van de metrostations niet los kan worden gezien van gebeurtenissen in de parkeergarages en omgekeerd. Neem de geplande volautomatische parkeergarage boven station Vijzelgracht. Bij brand in dit soort ‘parkeermachines’ gaan we als brandweer niet naar binnen. Daarom worden ze vaak uitgerust met een automatisch CO2-blussysteem, dat wordt gedimensioneerd op een lege garage. Als dat hier ook gebeurt en er ontstaat brand op een moment dat de garage redelijk vol is, dan is er kans dat het overschot aan CO2 – dat zwaarder is dan lucht – via de doorgangen in het station terecht komt. Dat willen we niet en daarom overleggen we inmiddels over een alternatief blussysteem voor deze parkeergarage.”

Doorsnede van het nieuwe station Vijzelgracht. (Beeld: gemeente Amsterdam)

Ingesloten door rook

Beij: “Een ander voorbeeld is Amsterdam CS. Aan de kant van het IJ liggen hier vier lagen infrastructuur boven elkaar. Op het onderste niveau kruist de Noord/Zuidlijn het treinstation en bevindt zich het nieuwe metrostation. Op het niveau hierboven ligt parallel aan het IJ de Michiel de Ruijtertunnel met twee tunnelbuizen voor wegverkeer. Op het dak van deze tunnel is een winkelcentrum in een hal van het station. En bovenop dit winkelcentrum, op het hoogste niveau, ligt het busstation dat is overdekt door een grote gebogen glazen kap. Tussen de tunnelbuizen van de Michiel de Ruijtertunnel zijn er (rol)trappen die het metro-, trein- en het busstation met elkaar verbinden. Meervoudig ruimtegebruik ten voeten uit!”

Doorsnede van station Amsterdam Centraal aan de IJ-zijde. (Beeld: gemeente Amsterdam)

“Kijk je naar de veiligheid, dan voldoen alle objecten aan de wettelijke eisen. Helaas betekent dit niet dat de combinatie van deze vier objecten ook veilig is. Stel bijvoorbeeld dat in de Michiel de Ruijtertunnel een auto in brand komt te staan. Aangezien in deze tunnel geen ventilatoren zijn aangebracht – dat is niet verplicht voor tunnels met een lengte tussen de 250 en 500 meter – verlaat de rook de tunnel via beide tunnelmonden. De grote glazen kap van het busstation steekt over deze tunnelmonden heen. Daardoor verzamelt de rook zich vanuit twee kanten onder de kap, koelt af en zakt vervolgens via de roltrappen naar beneden richting het lager gelegen winkelcentrum en metrostation. Simulatieberekeningen laten zien dat in zo’n geval binnen enkele minuten grote aantallen mensen ingesloten raken door de rook, waardoor de kans op slachtoffers fors is.”

Meedenken

“Dit soort ongewenste situaties kun je voorkomen door in een vroeg stadium een uitgebreide veiligheidsafweging te maken”, aldus Galesloot. “Voor het project Zuidasdok is bijvoorbeeld vooraf een integraal veiligheidsplan gemaakt dat is meegenomen in het bestuursakkoord en in het tracébesluit. Daardoor is wettelijk vastgelegd dat in iedere fase van dit omvangrijke project rekening moet worden gehouden met de omgeving.”

Beij: “In de praktijk is dit lang niet altijd mogelijk. Immers, de meeste infrastructuur en steden worden niet integraal ontworpen, maar groeien stapsgewijs. Daardoor is het lastig om het geheel te overzien en de integrale veiligheid te blijven garanderen. Ik ben er echter van overtuigd dat we daar wel naar moeten streven. Hoe dat het beste kan, weet ik nog niet.”

Illustratie van het mobiliteitssysteem in lagen volgens de Raad voor de leefomgeving en infrastructuur. (Bron: Van B naar Anders)

(Foto: Vincent Basler)

De Maastunnel in Rotterdam werd in 2012 als eerste tunnel in Nederland uitgeroepen tot rijksmonument. Bij de restauratie/renovatie van de tunnel werken Combinatie Aanpak Maastunnel en de gemeente Rotterdam samen om de wensen en eisen vanuit tunnelveiligheid en monumentenzorg zorgvuldig op elkaar af te stemmen. Buro van Stigt uit Amsterdam werd aangesteld als intermediair tussen Monumentenzorg en de gemeente Rotterdam om de monumentale waarden van de tunnel te bewaken en bewaren.

“Op het moment dat je met een rijksmonument te maken hebt, gaan allerlei zaken spelen. De veiligheidseisen kunnen botsen met de eisen van monumentenzorg”, vertelt Rinus Braam van Ingenieursbureau Gemeentewerken Rotterdam. “We zijn al in januari 2016 met alle partijen samen gaan zitten om het project voor te bereiden”, zegt Dieter van Staveren van Mobilis/TBI. Het doel is om de oorspronkelijke tunnel uit 1942 zo veel mogelijk te benaderen. Van de in de periode 1937-1942 door de gemeente Rotterdam in eigen beheer gebouwde tunnel is veel documentatie bewaard gebleven. “Maar omdat in die tijd anders met informatie werd omgegaan en bijvoorbeeld niet werd bijgehouden waar asbest werd gebruikt, hebben we veel onderzoek moeten doen”, aldus Rinus Braam.

“Dat jaar voorbereiding was een groot voordeel. In samenwerking kom je tot het beste resultaat.”

Dieter van Staveren: “We hebben een heel convergentiejaar gebruikt om alle aspecten van de renovatie af te stemmen. In dat jaar hebben we in de nachtelijke uren al allerlei proeven uitgevoerd. Bijvoorbeeld ten behoeve van de langsverlichting, maar ook het nabouwen van de leuningen van het inspectiedek en het aanbrengen van proefvlakken met geel asfalt.” Rinus Braam: “Dat jaar voorbereiding was een groot voordeel. In samenwerking kom je tot het beste resultaat.” Dieter van Staveren: “Je probeert iedereen in zijn waarde te laten, maar intussen wel door te pakken en door middel van onderzoek zo veel mogelijk te voorkomen dat je tegen onvoorziene zaken aanloopt.”

Focus op uitstraling
Bij de restauratie van een monument als de Maastunnel is vooral van belang dat de uitstraling van het object behouden blijft. Er kunnen andere materialen worden toegepast zolang kleur en vorm behouden blijven. De originele lagedruknatriumlampen worden vervangen door ledlicht. Na uitgebreide proeven is een kleur geel gevonden die niet te onderscheiden is van het origineel. Bij calamiteiten kan worden geschakeld naar wit licht, conform de veiligheidseisen. De gietijzeren armaturen aan de binnenzijde van de tunnel blijven gehandhaafd. Vervangende armaturen worden volgens de oorspronkelijke specificaties opnieuw gegoten. In een aantal gevallen wordt de oorspronkelijke uitstraling juist hersteld. Zo krijgt het asfalt de gele kleur van de oorspronkelijke klinkertjes.

Een vluchtdeur in de tunnel, lees meer in het blog van maastunnel.nl. (Foto: facebook.com/maastunnel)

Dieter van Staveren: “We brengen ook de oorspronkelijke leuningen langs het inspectiepad weer terug. Die waren in de jaren tachtig vervangen. De oorspronkelijke leuningen hebben echter niet de tussenregel die nu wel wettelijk verplicht is, en zijn niet 1,10, maar 0,85 meter hoog. Omdat de leuningen op het inspectiepad staan en in de praktijk nauwelijks worden gebruikt, konden we hier gemotiveerd van de regels afwijken en hebben we een ontheffing op de bouwvergunning gekregen.” Ook ten behoeve van de brandwerendheid moest een compromis worden gesloten. Rinus Braam: “Het plafond van de tunnel is afgewerkt met vuurvaste chamottetegels. Die zijn nauwelijks meer te krijgen. We gebruiken hiervoor Promatect, dat met wapening en stucwerk zodanig wordt afgewerkt, dat het beeld gelijk blijft aan dat van de oorspronkelijke toepassing.” De uitstraling van de hulppostkasten moest vanwege de wettelijke eisen wel veranderen. De kasten worden vanwege de zichtbaarheid rood en kunnen dus niet de kleur van de wandtegels behouden.

Een van de grootste opgaven was het toepassen van de wettelijk vereiste langsventilatie zonder het beeld in de tunnel aan te tasten. Dat is opgelost met een verhoogd tunneldak en een nieuw tussenplafond, waar de ventilatoren aan de buitenzijde van de tunnel tussen zijn geplaatst. De tunneltechnische installaties die verplicht zijn volgens de Wet aanvullende regels veiligheid wegtunnels (Warvw), waaronder luidsprekers en camera’s, zijn zo veel mogelijk geclusterd, zodat de impact op de uitstraling van de tunnel beperkt blijft. Ook ten aanzien van de vluchtroutes werd een compromis bereikt. Door extra trapjes te plaatsen werd voorkomen dat de originele betonnen schampkant gesloopt moest worden.

Anticiperen
Ondanks de goede voorbereiding komen de uitvoerders tijdens de renovatie onverwachte zaken tegen. Bijvoorbeeld toen bleek dat de bestaande wandtegels een veel lagere hechtingsbelasting hadden dan aangenomen, en 17.500 m² replicategels uit Spanje geïmporteerd moesten worden. Vertraging in de voorbereiding is dan onvermijdelijk, terwijl de planning – met twee keer een eenzijdige afsluiting van zomer tot zomer – heilig is. Dieter van Staveren: “We hebben van tevoren gezegd dat we van de beschikbare 52 weken er maar 46 wilden gebruiken. Zo hadden we zes weken voor ‘onvoorziene zaken’.” “En”, vult Rinus Braam aan, “we hebben nog wat optimalisatie in de planning weten te realiseren. Van de buffer uit het eerste jaar hebben we nu (december 2017, red.) drie weken gebruikt. Dus we zitten goed op schema.” Dieter van Staveren: “We zijn er zeker van dat we de eerste tunnelbuis in juli kunnen overdragen aan de opdrachtgever. Volgend jaar zullen we vermoedelijk efficiënter kunnen werken, omdat we hebben geleerd in de eerste buis en niet meer voor verrassingen komen te staan.”

Amsterdam, Eerste Coentunnel

De Eerste Coentunnel is meer dan veertig jaar oud. (Foto: Kees Stuip Fotografie)

In mei 2013 ging de Tweede Coentunnel open voor het verkeer. Dat was het moment waarop de renovatie begon van de pal ernaast gelegen Eerste Coentunnel. Deze afzinktunnel onder het Noordzeekanaal stamt uit 1966 en moet nodig worden gemoderniseerd om weer vijftig jaar op een goede en veilige manier het autoverkeer over de A10 tussen Amsterdam en Zaandam te kunnen verwerken. De tunnelconstructie wordt gerenoveerd en er worden maatregelen genomen om de luchtkwaliteitsbeheersing te verbeteren. Verder krijgt de tunnel alle verkeers- en tunneltechnische installaties die in de Tweede Coentunnel zijn toegepast om te voldoen aan de eisen van de nieuwe tunnelstandaard.

De renovatie wordt in opdracht van Rijkswaterstaat uitgevoerd door het consortium Coentunnel Company en is onderdeel van het DBFM-contract ‘Capaciteitsuitbreiding Coentunnel’ dat loopt tot 2037. De planning is dat de gerenoveerde tunnel medio 2014 in gebruik wordt genomen. Dan biedt deze tunnel drie vaste rijbanen voor het wegverkeer dat in zuidelijke richting rijdt, van Zaandam naar Amsterdam.

Werkzaamheden

Er is gestart met sloopwerkzaamheden. Alle tegels van de wanden zijn verwijderd evenals stukken beton die niet meer voldeden, het wegdek en alle oude kabels, leidingen en installaties. De wanden zijn voorzien van een onderhoudsarme betonnen afwerklaag en deels van brandwerend materiaal om te zorgen dat de tunnel bij een eventuele brand zijn constructieve integriteit behoudt. Ook de plafonds zijn voorzien van (hergebruikt) hittewerend materiaal.

(Foto: Kees Stuip Fotografie)

Voor het verbeteren van de luchtkwaliteitsbeheersing in de tunnel is de open dakconstructie bij de tunnelmonden vervangen door dichte ‘plafonds’. Verder is een schoorsteen van 25 meter hoog gebouwd die de uitlaatgassen uit de tunnel moet afvoeren. Om de plafonds te kunnen maken, moest een aantal betonnen stempels bij de tunnelmonden worden verwijderd. Een tijdelijke stempelconstructie – die de functie van de stempels overnam – zorgde er tijdens de bouwfase voor dat de hoge wanden niet naar binnen werden gedrukt en de tunnel ondertussen toegankelijk bleef voor het werkverkeer.

Door het verwijderen van de betonnen stempels en andere sloopwerkzaamheden nam het gewicht van de tunnelconstructie tijdelijk fors af. Daardoor bestond de kans dat de constructie door het grondwater omhoog zou worden gedrukt. Om dat te voorkomen, zijn stapels stalen rijplaten als extra gewicht op de tunnelvloer gelegd.

De tunnel wordt voorzien van diverse installaties die zorgen voor een vlotte en veilige doorstroming van het verkeer. Daarbij gaat het om camera’s, matrixborden boven de weg, verplaatsbare informatiepanelen en sensoren in het wegdek die registreren of het verkeer rijdt of stilstaat. Verder krijgt de tunnel ventilatoren die bij brand de rook uit de tunnel afvoeren, brandbluspompen die automatisch aangaan en licht- en geluidsignalen die passagiers richting de vluchtwegen leiden. De aansturing van al deze installaties gebeurt met een geavanceerd bedienings- en besturingssysteem.

Aanpak

Vanwege de korte periode waarin de renovatie en het testen van alle installaties moeten zijn afgerond, is het cruciaal dat alle werkzaamheden in één keer goed gaan. Dat vereist een goede engineering en bouwfasering. De Coentunnel Construction, de uitvoerende organisatie onder de Coentunnel Company, heeft hiervoor ingenieursbureau Sophia Engineering ingeschakeld.

Het ontwerpteam heeft bij de engineering al rekening gehouden met alle installaties en kabels en leidingen, zodat de kans op onaangename verrassingen tijdens de uitvoering minimaal is. Verder is er een driedimensionaal model gemaakt, waarin alle werkzaamheden in de tijd zijn gevisualiseerd. Dit model zorgt er niet alleen voor dat de fasering helder is, maar geeft direct inzicht in de complexe aanpassingen van de betonvormen van de schoorsteenconstructie en laat zien welke raakvlakken er zijn tussen de verschillende werkzaamheden

Zwemmen in een schuilkelder

De Finse hoofdstad Helsinki beschikt sinds 2010 over een integraal ondergronds masterplan. Het plan brengt de bestaande ondergrondse toepassingen in kaart en voorziet in reserveringen voor toekomstig gebruik. Volgens Ilkka Vähäaho, hoofd van de geotechnische divisie van Helsinki en voorzitter van de Finse tunnelassociatie, is het plan een onmisbaar hulpmiddel voor duurzame ontwikkeling van de stad en zijn ondergrond.

Vähäaho: “Het masterplan voor de ondergrond is bijvoorbeeld het fundament voor de bijdrage van de ondergrond aan een duurzaam en esthetisch acceptabel landschap en behoud van ontwikkelmogelijkheden voor toekomstige generaties. Zo speelt het masterplan een belangrijke rol in de ruimtelijke ordening.”

Het ondergrondse masterplan voor Helsinki brengt zowel de bestaande als toekomstige ondergrondse ruimten, tunnels en vitale ondergrondse onderlinge verbindingen in kaart. In het plan zijn reserveringen opgenomen voor nu nog onbekende toekomstige ondergrondse toepassingen. Op basis van uitgebreid geologisch onderzoek is bepaald welke plekken in de ondergrond geschikt zijn. Daarbij is vooral gekeken welke nog niet benutte ondergrondse capaciteit in de toekomst een bijdrage kan leveren aan het verminderen van de druk op het stadscentrum. Anders dan in Nederland, waar de meeste ondergrondse bouwwerken ‘stand-alone’ zijn, ontwikkelt de ondergrond van Helsinki zich door het verbinden van bestaande en nieuwe ondergrondse toepassingen steeds meer tot een aaneengesloten ondergrondse stad.

De integrale aanpak biedt extra voordelen boven op die van het sec ondergronds gaan. Er is sprake van multifunctioneel ondergronds ruimtegebruik, zoals bij het ondergrondse zwembad in Itäkeskus, dat in tijden van nood kan worden omgevormd tot schuilkelder. Een datacenter onder een kathedraal wordt via een ondergronds buizenstelsel gekoeld met zeewater. De restwarmte gaat – ook weer ondergronds – naar de stadsverwarming.

Er zijn grote voordelen verbonden aan multifunctionele leidingentunnels. Ilkka Vähäaho geeft aan dat het masterplan ook een bijdrage levert aan een betrouwbare energievoorziening en optimalisatie van energie-opwekking. Kosten kunnen worden gedeeld door meerdere gebruikers. Bovengronds ontstaat ruimte voor nieuwe initiatieven, en het uiterlijk en imago van de stad worden verbeterd. Onderhoud is eenvoudiger en goedkoper en de impact van werkzaamheden aan ondergrondse leidingen op het dagelijks leven bovengronds is beperkt. Bovengronds komt ruimte vrij voor andere doeleinden.

Lange historie

Helsinki heeft een lange historie van ondergronds bouwen. De stad kent nu al meer dan vierhonderd ondergrondse bouwwerken, zestig kilometer tunnels voor technisch onderhoud en tweehonderd kilometer multifunctionele leidingentunnels voor verwarming, koeling, elektriciteit en water. De watervoorziening van de stad is gegarandeerd door middel van een honderd kilometer lange ondergrondse tunnel die in de periode 1972-1982 werd gerealiseerd tussen Lake Päijanne en Helsinki.

Naast voor de hand liggende toepassingen als tunnels, parkeergarages en multifunctionele leidingentunnels voor onder andere stadsverwarming kent Helsinki ook tal van andere toepassingen, zoals muziekcentrum en een zwembad. Ook het bedrijfsleven gaat ondergronds, onder andere met opslag of het eerder genoemde ondergrondse datacenter.

In het masterplan is rekening gehouden met tweehonderd reserveringen voor ondergronds gebruik en nog eens veertig reserveringen zonder vooraf bepaalde bestemming. De gemiddelde oppervlakte van die reservering is dertig hectare, optellend tot een totaal van veertien honderd hectare, ofwel 6,4% van de oppervlakte van Helsinki. In 2011 werd berekend dat er voor elke honderd vierkante meter bovengrondse ruimte een vierkante meter ondergrondse ruimte werd benut. De huidige reserveringen vertegenwoordigen dus nog een enorm ondergronds potentieel.

Bovengrondse kwaliteit

Uitgangspunt is dat wat niet bovengronds hoeft, net zo goed ondergronds kan. Burgemeester Jussi Pajunen daarover in een documentaire van CNN: “Functies die niet gezien hoeven te worden, stoppen we onder de grond. Het is relatief goedkoop, dus waarom zou je er geen gebruik van maken.” De kwaliteit van de bovengrondse ruimte blijkt in veel gevallen de belangrijkste drijfveer. Ilkka Vähäaho: “Niet-Finse deskundigen beweren wel dat de gunstige eigenschappen van het bedrockgesteente en de zeer strenge winterklimatologische omstandigheden de belangrijkste drijfveren voor deze ontwikkeling zijn geweest. Maar er zijn belangrijker argumenten. Finnen hebben een sterke behoefte aan open ruimten, zelfs in de stadscentra, en Helsinki is klein. Het is qua inwoners de grootste stad van Finland, maar behoort qua oppervlakte tot de kleinste.”

Zero-land-use-thinking

Helsinki kent al sinds de jaren tachtig van de vorige eeuw een toewijzingsbeleid voor ondergronds ruimtegebruik. Begin deze eeuw ontstond het idee voor een integraal ondergronds masterplan. De eerste voorbereidingen startten in 2004. De gemeenteraad van Helsinki keurde het masterplan in december 2010 goed. Ilkka Vähäaho noemt het een voorbeeld van ‘zero-land-use-thinking’. Met andere woorden, het uitgangspunt dat nieuwe functies in de stad niet tot extra bovengronds ruimtebeslag mogen leiden.

Hij illustreert dat met een doorsnede van het Katri Vala Park (zie figuur hiernaast). Daar werden sinds de jaren vijftig ondergronds achtereenvolgens opslagruimten, een multifunctionele leidingentunnel, een tunnel voor gezuiverd afvalwater en een warmtepompstation gerealiseerd. In het masterplan is onder dezelfde locatie ook nog ruimte gereserveerd voor toekomstig ondergronds gebruik. Het park is in al die tijd onaangetast gebleven.

 

 

Geotechniek voor Ondergrondse Ruimteontwikkeling

Voor het in kaart brengen van geschikte locaties voor toekomstig ondergronds gebruik heeft de geotechnische dienst van Ilkka Vähäaho uitgebreid onderzoek gedaan. Er is onderzoek gedaan naar locaties waar de mogelijk grote aaneengesloten ruimten kunnen worden gerealiseerd. Daarvoor werd een model ontwikkeld op basis van een standaardruimte van 12x50x150 meter (hxbxl). Met behulp van (hoogte)kaarten en boringen zijn de reeds benutte ondergrond en zwakke zones in kaart gebracht.

Het bedrockgesteente ligt in Helsinki niet ver onder het maaiveld. Dat betekent dat er veel goede, veilige locaties zijn voor aanleg van ondergrondse bouwwerken en installaties. Het onderzoek maakte zichtbaar dat er buiten het centrum vijfenvijftig locaties zijn waar in de buurt van verkeersknooppunten redelijk grootschalige ondergrondse voorzieningen gerealiseerd kunnen worden. Deze plekken zijn gemarkeerd als mogelijke toekomstige toegangen tot ondergrondse bouwwerken en infrastructuur.

Ambities
In Finland wordt ook buiten de hoofdstad gekeken naar de mogelijkheden die de ondergrond biedt. Ilkka Vähäaho noemt de steden Tampere, de derde stad van het land, en Oulu als voorbeelden. En er wordt serieus gekeken naar de haalbaarheid van een tachtig kilometer lange onderzeese tunnel tussen Helsinki en de Estse hoofdstad Tallinn, die dan samen zouden moeten uitgroeien tot de tweelingstad ‘Talsinki’, met de potentie om te gaan concurreren met steden als Stockholm en Kopenhagen.

Zo kan het ook: toffe tunnels

Een tunnel is in principe een middel om van A naar B te komen. Maar je kunt er méér van maken. Met creatief licht-, kleur- en materiaalgebruik zijn de functionele kunstwerken te transformeren tot spraakmakende échte.

Dit was de Onderbreking Tunnels en veiligheid

Bekijk een ander koffietafelboek: