Loading...

De Onderbreking

Tunnels en veiligheid

Tunnels en veiligheid

Werkbare oplossingen door integrale aanpak veiligheid

Amsterdam, Eerste Coentunnel

Visie van… Roel Scholten

Onderbreking Tunnels en veiligheid

Tunnelbouw – het bijzondere is gewoon geworden

Antwerpen krijgt dubbeldekstunnel onder havens

Rotterdam, Stationsgebied

Zuidasdok integraal aangepakt

SOS: Meer meten met infrarood

Kennisbank

Tunnels en veiligheid

Tunnels zijn wellicht de bekendste voorbeelden van ondergrondse bouwwerken. Het begon in Nederland met afgezonken tunnels om watergangen te kruisen, inmiddels worden ook boor- en landtunnels breed toegepast. Ontwikkelingen in de praktijk vragen om ontwikkeling in kennis en kunde. Ook op het gebied van veiligheid: ondergronds is het waarborgen van veiligheid vaak complexer dan boven de grond.

Nederland is specialist in afgezonken tunnels. Toch is er ook op dit gebied nog voldoende bij te leren. Gezien de hoge leeftijd van de meeste Nederlandse zinktunnels, is renovatie bijvoorbeeld een actuele en dringende opgave, waarover nog veel vragen leven. Daarnaast neemt de complexiteit bij het realiseren van geboorde tunnels toe: in stedelijke gebieden is het prettig als wegen en spoorlijnen ondergronds gaan, maar er is weinig ruimte om te bouwen en de hinder moet minimaal zijn. We willen in complexere situaties ondergronds bouwen, nog dieper en nog dichter bij de bestaande bebouwing.

Veiligheid is dan ook onlosmakelijk met ondergronds bouwen verbonden. Het werken in de grond heeft al snel effect op de omgeving. Bovendien moet de constructie na oplevering veilig te gebruiken zijn. Dat is op zichzelf al een opgave, maar een bijkomende uitdaging is het vooraf aantoonbaar maken van veilig gebruik, en dat in een complex belangenveld. De laatste jaren leidde dat bij tunnels soms tot problemen. Samen met het netwerk wil het COB ervoor zorgen dat nieuwe tunnels voortaan opengaan zonder gedoe.

Werkbare oplossingen door integrale aanpak veiligheid

Voor het Zuidasdok is een integraal veiligheidsplan ontwikkeld. Bij de totstandkoming zijn verschillende belangen en disciplines bij elkaar gebracht. Jasper Nieuwenhuizen, voorzitter van de werkgroep integrale veiligheid van de projectorganisatie Zuidasdok: “Het unieke is dat meerdere systemen integraal samenwerken. De veiligheidsplannen van drie opdrachtgevers komen hier bij elkaar. Er wordt niet naar ieder object afzonderlijk gekeken, maar naar het gebied als geheel.”

Jasper Nieuwenhuizen en Peter Bals, senior adviseur Proactie bij de Brandweer Amsterdam-Amstelland, waren al in de verkenningsfase bij het project betrokken en maken ook nu nog deel uit van de werkgroep Integrale Veiligheid, waarin naast de initiatiefnemers ProRailRijkswaterstaat en de gemeente Amsterdam ook de gebruikers zitting hebben (NSGVB, hulpdiensten en bevoegd gezag).

Jasper Nieuwenhuizen noemt de passagiersstromen bij het station als voorbeeld voor de integrale aanpak. “Het veiligheidsplan van de NS strekt zich uit tot de deur van het station. Dat van het gemeentelijk vervoersbedrijf (GVB) begint bij de halte. Beide zijn goed voor hun gebied, maar sluiten niet automatisch op elkaar aan. In het Integraal Veiligheidsplan (IVP) gaan we uit van voetgangersstromen in het hele gebied en dus niet per object of discipline.”

Op eenzelfde manier wordt naar een groot aantal veiligheidsaspecten gekeken, variërend van constructieve veiligheid tot sociale veiligheid en van tunnelveiligheid tot waterveiligheid (zie kader onderaan). Jasper Nieuwenhuizen: “We kijken in eerste aanleg naar het reduceren van gevaren. Op basis daarvan voeren we verbeteringen door. Dat leidt tot steeds robuustere plannen. Hierdoor zijn in de uitvoeringspraktijk waarschijnlijk minder wijzigingen nodig. Zo proberen we faalkosten te elimineren.”

Preventie in de planfase

Bij het reduceren van gevaren is de praktische inbreng van brandweer en hulpdiensten onmisbaar. Tegelijkertijd is het voor dergelijke organisaties zeker niet vanzelfsprekend dat zij zich mengen in de planfase van een project. Peter Bals: “Bij de brandweer hebben we net een strategische reis achter de rug die ertoe leidt dat we niet alleen ‘na de vlam’ willen kijken, maar ook ‘voor de vlam’. De kern van de brandweer is dat we in actie komen als het eigenlijk al te laat is. Dat wordt ook steeds duurder. Daar komt bij dat in het verleden in projecten vaak vertragingen ontstonden als gevolg van eisen van de brandweer. Door de brandweer heel vroeg in het proces te betrekken, kun je dat voorkomen.”

“Wij kunnen het abstracte denken van ontwerpers versterken vanuit onze concrete invalshoek”, vervolgt Bals. “Knelpunten kunnen we in de contracteringsfase oplossen. Zo kwamen we al vroeg tot de conclusie dat de bereikbaarheid voor brandweer en hulpdiensten tijdens de aanleg van de noordtunnel een groot knelpunt zou kunnen worden. Door het ontwerp en de fasering te optimaliseren is dit potentiële veiligheidsknelpunt in de voorfase al weggenomen Overigens zal de brandweer deze ‘stap naar voren’ ook in andere projecten gaan maken. We proberen deze werkwijze ook bij kleinere projecten in beeld te krijgen. Ideaal zou zijn als veiligheid al wordt meegewogen in de fase waarin een projectontwikkelaar een eerste voorstel aan de gemeente doet.”

Bestuurlijke consensus

De aanpak waarin zoveel disciplines in zo’n vroeg stadium bij het project zijn betrokken, is bijzonder. Al in 2009, toen vast kwam te staan dat de variant ‘Dok onder de grond’ gefaseerd zou worden uitgevoerd, werd tot de integrale aanpak besloten. In een bestuursovereenkomst, getekend door het ministerie van Infrastructuur en Milieu, de gemeente Amsterdam, de stadsregio Amsterdamen de provincie Noord-Holland, werd vastgelegd dat alle betrokken partijen gezamenlijk aan een integraal veiligheidsplan zouden werken. Jasper Nieuwenhuizen: “Voorheen is wel geëxperimenteerd met een Veiligheidseffectrapportage, maar dat is nooit goed van de grond gekomen. Deze aanpak voldoet wel aan de verwachtingen.”

Impressie dwarsdoorsnede van mogelijke eindsituatie voor A10 en spoor (trein en metro). Ook is de huidige A10 weergegeven. Dit wordt in de eindsituatie openbare ruimte. (Beeld: Projectorganisatie Zuidasdok)

Voorkomen dat het misgaat

Aanleiding voor het IVP was onder meer het rapport Sneller en beter van de commissie Elverding. Deze commissie onderzocht in 2008 waar het misgaat in de besluitvorming over infrastructuurprojecten en kwam met aanbevelingen om tot snellere en betere uitvoering van grote infrastructurele projecten te komen. De aanbeveling van de commissie Elverding om de besluitvorming te verbeteren door ‘een strakke procesbeheersing en kwaliteitsbewaking in alle fasen, onder meer door middel van een procesplan bij het begin van elke fase’, werd in Amsterdam opgepakt.

De belangen zijn dan ook groot. Zuidasdok is een enorm project, dat zich over een groot aantal jaren uitstrekt en in allerlei opzichten een enorme impact op de omgeving zal hebben. Jasper Nieuwenhuizen: “Het is een heel belangrijk gebied in Nederland, dat je niet zomaar ‘dicht’ kunt doen. Werken met de winkel open vergt extra voorbereidingen. Integraal kijken draagt bij aan het op een zo hoog mogelijk niveau bewaken van de kwaliteit.”

Definitie veiligheidsthema’s

Veiligheidsthema

Definitie

Arbeidsveiligheid

De veiligheid van personen die beroepshalve aanwezig zijn. In het kader van het IVP ligt de scope op bouwactiviteiten.

Bouwveiligheid

Veiligheid van werknemers en omstanders bij een bouwplaats (arbeidsveiligheid en omgevingsveiligheid bouw gecombineerd).

Brandveiligheid

Veiligheid van personen met betrekking tot brand en de gevolgen van brand voor een constructie.

Constructieve veiligheid

De veiligheid van personen met betrekking tot het bezwijken van of het ontstaan van schade aan een constructie.

Externe veiligheid transport

De kans om te overlijden als rechtstreeks gevolg van een voorval bij het transport van een gevaarlijke stof (via weg, water, spoor en/of leiding).

Fysieke veiligheid

Fysieke veiligheid is het gevrijwaard zijn (en het gevrijwaard voelen) van gevaar dat voortvloeit uit ongevallen van natuurlijke en gebouwde omgeving. Dit gevaar bedreigt materiële en immateriële zaken die de maatschappij waardevol acht, zoals leven en gezondheid van mens en dier, goederen, het milieu en het ongestoord functioneren van de maatschappij [NIFV].

Integrale veiligheid

Alle veiligheidsaspecten van een systeem in samenhang beschouwd.

Machineveiligheid

De veiligheid voor gebruikers en onderhouds- en bedienend personeel van machines.

Omgevingsveiligheid bouw

De veiligheid van personen, niet zijnde werknemers, in de omgeving van bouwwerkzaamheden.

Overige interne fysieke veiligheid

Interne fysieke veiligheid omvat alle veiligheidsthema’s van interne veiligheid, uitgezonderd sociale veiligheid. Toch blijven er enkele onderwerpen over:veiligheid bij ontruimingen zonder brand en veiligheid bij grote drukte (crowding).

Security

De bescherming of beveiliging van inrichtingen, personen en infrastructuur tegen moedwillige verstoringen.

Systeemveiligheid

De veiligheid van degenen die aanwezig zijn in het systeem (railverkeer, wegverkeer, vaarwegverkeer, etc.), zoals reizigers, personeel en overige aanwezigen in de nabijheid van het systeem.

Transferveiligheid

Veiligheid van de passanten en gebruikers die zich verplaatsen binnen de transferruimte van de Openbaar Vervoer Terminal OVT. Transferveiligheid valt binnen dit IVP uiteen in onderdelen van andere veiligheidsthema’s (onder meer brandveiligheid in de OVT, spoorwegveiligheid ter plaatse van perrons, veiligheid bij grote drukte, verkeersveiligheid binnen de OVT) en wordt niet separaat beschouwd.

Sociale veiligheid

De mate waarin mensen beschermd zijn en zich beschermd voelen tegen persoonlijk leed door misdrijven (criminaliteit), overtredingen en overlast door andere mensen.

Spoorwegveiligheid

Veiligheid op en rondom het spoorwegnet in Nederland, zowel van treinreizigers en passanten (wegen langs het spoor, spoorwegkruisingen) als werkers aan het spoor. De metro wordt beschouwd bij het thema spoorwegveiligheid.

Tunnelveiligheid

Veiligheid van personen in omsloten verkeersconstructies.

Waterveiligheid

Veiligheid van personen of objecten met betrekking tot hoog-water (ook als gevolg van het binnendringen in ruimten onder maaiveld).

Wegverkeersveiligheid

Veiligheid van verkeersdeelnemers, als gevolg van deelname aan het wegverkeer. Het openbaar vervoer bestaande uit bussen en trams wordt ondergebracht bij het thema wegverkeersveiligheid.

 

Amsterdam, Eerste Coentunnel

De Eerste Coentunnel is meer dan veertig jaar oud. (Foto: Kees Stuip Fotografie)

In mei 2013 ging de Tweede Coentunnel open voor het verkeer. Dat was het moment waarop de renovatie begon van de pal ernaast gelegen Eerste Coentunnel. Deze afzinktunnel onder het Noordzeekanaal stamt uit 1966 en moet nodig worden gemoderniseerd om weer vijftig jaar op een goede en veilige manier het autoverkeer over de A10 tussen Amsterdam en Zaandam te kunnen verwerken. De tunnelconstructie wordt gerenoveerd en er worden maatregelen genomen om de luchtkwaliteitsbeheersing te verbeteren. Verder krijgt de tunnel alle verkeers- en tunneltechnische installaties die in de Tweede Coentunnel zijn toegepast om te voldoen aan de eisen van de nieuwe tunnelstandaard.

De renovatie wordt in opdracht van Rijkswaterstaat uitgevoerd door het consortium Coentunnel Company en is onderdeel van het DBFM-contract ‘Capaciteitsuitbreiding Coentunnel’ dat loopt tot 2037. De planning is dat de gerenoveerde tunnel medio 2014 in gebruik wordt genomen. Dan biedt deze tunnel drie vaste rijbanen voor het wegverkeer dat in zuidelijke richting rijdt, van Zaandam naar Amsterdam.

Werkzaamheden

Er is gestart met sloopwerkzaamheden. Alle tegels van de wanden zijn verwijderd evenals stukken beton die niet meer voldeden, het wegdek en alle oude kabels, leidingen en installaties. De wanden zijn voorzien van een onderhoudsarme betonnen afwerklaag en deels van brandwerend materiaal om te zorgen dat de tunnel bij een eventuele brand zijn constructieve integriteit behoudt. Ook de plafonds zijn voorzien van (hergebruikt) hittewerend materiaal.

(Foto: Kees Stuip Fotografie)

Voor het verbeteren van de luchtkwaliteitsbeheersing in de tunnel is de open dakconstructie bij de tunnelmonden vervangen door dichte ‘plafonds’. Verder is een schoorsteen van 25 meter hoog gebouwd die de uitlaatgassen uit de tunnel moet afvoeren. Om de plafonds te kunnen maken, moest een aantal betonnen stempels bij de tunnelmonden worden verwijderd. Een tijdelijke stempelconstructie – die de functie van de stempels overnam – zorgde er tijdens de bouwfase voor dat de hoge wanden niet naar binnen werden gedrukt en de tunnel ondertussen toegankelijk bleef voor het werkverkeer.

Door het verwijderen van de betonnen stempels en andere sloopwerkzaamheden nam het gewicht van de tunnelconstructie tijdelijk fors af. Daardoor bestond de kans dat de constructie door het grondwater omhoog zou worden gedrukt. Om dat te voorkomen, zijn stapels stalen rijplaten als extra gewicht op de tunnelvloer gelegd.

De tunnel wordt voorzien van diverse installaties die zorgen voor een vlotte en veilige doorstroming van het verkeer. Daarbij gaat het om camera’s, matrixborden boven de weg, verplaatsbare informatiepanelen en sensoren in het wegdek die registreren of het verkeer rijdt of stilstaat. Verder krijgt de tunnel ventilatoren die bij brand de rook uit de tunnel afvoeren, brandbluspompen die automatisch aangaan en licht- en geluidsignalen die passagiers richting de vluchtwegen leiden. De aansturing van al deze installaties gebeurt met een geavanceerd bedienings- en besturingssysteem.

Aanpak

Vanwege de korte periode waarin de renovatie en het testen van alle installaties moeten zijn afgerond, is het cruciaal dat alle werkzaamheden in één keer goed gaan. Dat vereist een goede engineering en bouwfasering. De Coentunnel Construction, de uitvoerende organisatie onder de Coentunnel Company, heeft hiervoor ingenieursbureau Sophia Engineering ingeschakeld.

Het ontwerpteam heeft bij de engineering al rekening gehouden met alle installaties en kabels en leidingen, zodat de kans op onaangename verrassingen tijdens de uitvoering minimaal is. Verder is er een driedimensionaal model gemaakt, waarin alle werkzaamheden in de tijd zijn gevisualiseerd. Dit model zorgt er niet alleen voor dat de fasering helder is, maar geeft direct inzicht in de complexe aanpassingen van de betonvormen van de schoorsteenconstructie en laat zien welke raakvlakken er zijn tussen de verschillende werkzaamheden

Nog lang niet uitontwikkeld

Sinds 2015 was Roel Scholten COB-coördinator Tunnels en veiligheid. Hierbij stelde hij innovatie en doorontwikkeling van de sector steeds centraal. In april 2017 stopte hij bij het COB om voor ZuidPlus als ontwerpleider tunneltechnische installaties te gaan werken aan de tunnels van Zuidasdok. Betekent dit dat de sector is uitontwikkeld? “Integendeel,” zegt Roel, “we staan pas aan de vooravond van de grote innovaties!”

“In een rapport van februari 2017 stelt het McKinsey Global Institute dat productiviteitsgroei in de bouwsector ongeveer een derde is van de wereldwijde groei. En de bouwsector in Europa stond begin 2016 op de laatste plek in de lijst van digitalisering van sectoren. Terwijl de uitdagingen voor de bouwsector, en specifiek de infrasector, juist vragen om innovatie en verhoogde productiviteit: met de aankomende tunnelrenovaties in Nederland, moeten we oplossingen ontwikkelen om de enorme maatschappelijke impact die afsluitingen van deze tunnels zullen veroorzaken, voor te blijven.

De ontwikkeling van virtual en augmented reality (VR) zal al op korte termijn een rol spelen. Hierdoor kunnen we vroeg in het project ontwerpoplossingen valideren met belanghebbenden, of ontwikkelde software volledig testen voordat de tunnel fysiek is gerealiseerd. En natuurlijk zal het opleiden, trainen en oefenen (OTO) van de tunnelorganisatie met VR veel realistischer en zonder afsluitingen kunnen plaatsvinden. Maar ook los van VR helpen allerlei digitale tools ons nú al, bijvoorbeeld bij het genereren van ontwerpdocumenten, geautomatiseerd uitvoeren van cyclische ontwerpstappen en het doorrekenen van impact van onderhoudsactiviteiten.

Voor onderhoud zal de toepassing van sensoren en bijbehorende data-analyse ons veel informatie geven over de actuele technische staat van het areaal. Hierdoor kunnen we nog beter de degradatie van onze systemen gaan begrijpen en dat helpt ons om precies op tijd in te grijpen en onderhoudsregimes toe te passen waarbij, afhankelijk van de wens van de beheerder, geoptimaliseerd wordt op kosten, beschikbaarheid en/of betrouwbaarheid. In de uitvoering verwacht ik veel van ontwikkelingen op het gebied van prefab, waardoor werkzaamheden on-site worden beperkt en de kwaliteit van onderdelen zal toenemen, doordat ontwikkeling in een beter te controleren omgeving gebeurt.

Innovaties hebben echter alleen meerwaarde als deze toegepast worden door mensen met verstand van zaken. Binnen NedMobiel zeggen we: ‘Je moet wel ooit een tunnel van binnen hebben gezien om te snappen wat je er wel en niet mee kunt’. Ik ben ervan overtuigd dat innovaties versneld ontwikkeld en getoetst worden in projecten. Dat is een van de redenen dat ik met veel plezier ja heb gezegd tegen ZuidPlus: goed om weer van die kant bovenop de ontwikkelingen te zitten!”

Roel Scholten is medeoprichter en directeur van Ned- Mobiel. NedMobiel is vanuit tunnelveiligheid, assetmanagement, OTO of projectmanagement betrokken bij o.a. de Zuidas, Blankenburgtunnel, Gaasperdammertunnel, Stadsbaantunnel, RijnlandRoute , tunnels van Schiphol, Abdijtunnel en de Piet Heijntunnel.

Foto: Vincent Basler

Verkenning virtueel testen

Bij een grootschalige renovatie moet een tunnel vaak volledig worden afgesloten, onder meer om de veiligheid te testen. Het COB-netwerk onderzoekt of de afsluitingsperiode kan worden ingekort door het testen deels virtueel uit te voeren, zodat er al met testen begonnen kan worden voordat de renovatie is afgerond. De eerste stap was een verkenning van de mogelijkheden en randvoorwaarden.

De hinder als gevolg van het afsluiten van een tunnel voor een renovatie bestaat grofweg uit drie fases:

  • Fase 1: De uitvoerings- en installatiewerkzaamheden (inclusief inbedrijfstelling)
  • Fase 2: De testen in de tunnel (SAT, iSAT, SIT, iSIT)
  • Fase 3: Het verkrijgen van de openstellingsvergunning

De hypothese van het COB-project is dat de duur van een volledige tunnelafsluiting behoorlijk verkort kan worden (wat de maatschappelijke kosten reduceert) door fase 2 (deels) parallel te laten lopen met renovatie. Hiertoe zullen testen anders vormgegeven moeten worden, bijvoorbeeld met simulaties en visualisaties. Hierbij geldt dat zeker moet zijn dat het functioneren van de gerenoveerde tunnel (tunneltechnische installaties, TTI) minimaal gelijk blijft aan het huidige niveau.

Als eerste stap wilde het COB-netwerk het volgende verkennen:

  1. De stand der techniek, om een inschatting te maken of (en/of wanneer) een dergelijke aanpak technisch mogelijk is;
  2. De houding van diverse stakeholders tegenover een dergelijke aanpak, om een beeld te krijgen van het draagvlak voor mogelijke oplossingen;
  3. De ontwikkelingen die nodig zijn voordat een dergelijke aanpak tot kortere afsluitingen en minder maatschappelijke kosten leidt;
  4. De wijze waarop benodigde ontwikkelingen versneld en gestimuleerd kunnen worden (bijvoorbeeld via pilotprojecten);
  5. Of en hoe er een connectie is met een nationaal testcentrum.

De verkenning vond plaats via worshops met een aantal belanghebbenden (bevoegde gezagen, Landelijk Tunnelregisseur, veiligheidsbeambte Rijkswaterstaat, etc.) en toeleveranciers (Soltegro, Movares, Covalent, Nspyre, etc.). De bevindingen zijn samengebracht in een position paper.

Workshops

Op 22 mei 2017 is een eerste workshop gehouden met marktpartijen. De deelnemers zijn ervan overtuigd dat virtueel testen technisch gezien mogelijk is. Virtueel testen vergroot wel het belang van de ontwerp- en voorbereidingsfases, omdat er een betrouwbaar virtueel model nodig is (model driven design). Of virtueel testen in de praktijk toegepast zal worden als ‘officiële test’ heeft veel te maken met vertrouwen. Op dit moment eisen zowel de interne stakeholders van Rijkswaterstaat als het bevoegd gezag nog steeds dat bepaalde veiligheidseisen worden aangetoond in de tunnel. Er is dus nog een stap nodig om van een fysieke wereld naar een virtuele ervaring te gaan.

Deelnemers

Klik op het bedrijfslogo voor de deelnemende personen

Altran Netherlands B.V.

Locatie: Utrecht, Reykjavikplein 1
Ferdinand Cornelissen, rol: Deelnemer

Besix Nederland bv

Locatie: Dordrecht, Laan van Europa 900
Marie-José Knape, rol: Secretaris

BESIX S.A.

Locatie: Brussel, Avenue des Communautés 100
Jan van Steirteghem, rol: Voorzitter

COB

Locatie: Delft, Van der Burghweg 1
Caro Rietman, rol: Begeleider/Facilitator
Karin de Haas, rol: Coordinator
Leen van Gelder, rol: Coordinator

Covalent B.V.

Locatie: Amersfoort, Displayweg 3
Arjan Neef, rol: Deelnemer
Diderick Oerlemans, rol: Deelnemer

Ministerie van IenW DG/RWS

Locatie: Den Haag, Rijnstraat 8
Peter Kole, rol: Deelnemer

Movares

Locatie: Utrecht, Daalseplein 100
Aydemir Cetin, rol: Deelnemer
Jacco Kroese, rol: Deelnemer
Jan Beumer, rol: Deelnemer

Rijkswaterstaat

Locatie: Utrecht, Postbus 2232
Joyce Vreede, rol: Deelnemer

Rijkswaterstaat CIV Centrale Informatievoorziening

Locatie: Delft, Derde Werelddreef 2
Bernhard Thieme, rol: Deelnemer
Reinier van der Klooster, rol: Opdrachtgever

Rijkswaterstaat GPO Grote Projecten en Onderhoud

Locatie: Utrecht, Griffioenlaan 2
Johan Naber, rol: Deelnemer
Sjef van den Buijs, rol: Deelnemer

Rijkswaterstaat PPO Programma's, Projecten en Onderhoud

Locatie: Haarlem, Toekanweg 7
Arno Weiss, rol: Deelnemer

Rijkswaterstaat VWM Verkeer en Watermanagement

Locatie: Velsen-zuid, Amsterdamseweg 25
Dave de Wilde, rol: Deelnemer

Sogeti Nederland B.V.

Locatie: Vianen, Lange Dreef 17
Johan Beikes, rol: Deelnemer
Reinout van Elst, rol: Deelnemer
Tom van de Ven, rol: Deelnemer

Soltegro

Locatie: Capelle Aan Den Ijssel, Rivium Quadrant 159
Alexander van der Kolk, rol: Deelnemer
Franc Fouchier, rol: Deelnemer

Strypes Nederland

Locatie: Leersum, Broekhuizerlaan 3
Erik Holleboom, rol: Deelnemer

Tunnelbouw – het bijzondere is gewoon geworden

Afgelopen jaar werd Nederlands oudste tunnel, de Maastunnel in Rotterdam, gerenoveerd en oogt deze weer als nieuw. Daarmee beschikt Nederland over een ondergronds monument van allure. Of andere tunnels ooit die status bereiken, is de vraag. Nederland telt er inmiddels meer dan zeventig. Waar het bij de Maastunnel nog om uniek pionierswerk ging, is tunnelbouw anno 2020 niet meer zo bijzonder als het was. En dat is misschien wel de grootste verdienste van de sector.

Anno 2020 zijn er diverse tunnels in aanbouw. Het tunneloverzicht op de website van het COB telt in totaal momenteel meer dan zeventig (geplande) tunnels. Daarnaast is de ontwikkeling die de tunnelbouwsector in Nederland heeft doorgemaakt ook zichtbaar in tunnels tot ver buiten onze landsgrenzen. Nederlandse bedrijven zijn de afgelopen decennia betrokken geweest bij tal van prestigieuze tunnelprojecten in vrijwel alle werelddelen.

Bij de Maastunnel begon het marktleiderschap op het gebied van afgezonken tunnels. De vele rivierkruisingen in de dichtbevolkte Hollandse delta leidden tot steeds meer afzinktunnels en bij elk project namen het kennisniveau en de status van Nederland als tunnelbouwland toe. De ambitie om in slappe bodem ook tunnels te kunnen boren, leidde tot de Tweede Heinenoordtunnel. Een kwart eeuw later zijn ook geboorde tunnels heel normaal. Bovendien zijn het niet meer alleen ‘obstakels’ als waterwegen die tunnelaanleg rechtvaardigen: landtunnels faciliteren stedelijke groei én doorstroming van weg- en spoorverkeer.

Afzinktunnels

Het bouwprocedé voor afzinktunnels is in al die jaren niet wezenlijk veranderd. In een dok bouw je een aantal 100 tot 150 meter lange betonnen dozen, waarvan de kopse kanten open zijn. De kopse kanten maak je wel tijdelijk dicht, zodat ze drijvend getransporteerd kunnen worden. Op de plaats waar de tunnel moet komen, graaf je een sleuf in de rivierbodem of sla je een palenbed. De tunneldelen laat je gecontroleerd afzinken in de sleuf, waarna de tussenwanden worden verwijderd en een aaneengesloten tunnel ontstaat.

Wat in het ene project werd uitgeprobeerd, konden we verder brengen in het volgende project. De projecten konden als het ware steeds op elkaars schouders gaan staan.

De precieze invulling van het proces veranderde in de loop der tijd natuurlijk wel degelijk. Tal van nieuwe vindingen hebben de afzinktunnel verder geperfectioneerd. In de begindagen moesten de afzinkcommandanten het nog zonder elektronica doen. Landmeters op de kant, duikers onder water, extra mensen op het tunnelelement en op de sleepboten voorzagen de afzinkcommandant continu van informatie. Deels per telefoon, maar vaak ook met vlagsignalen. Inmiddels zijn gps en geavanceerde software niet meer weg te denken. De afzinkcommandant kan een tunneldeel met een lengte van meer dan honderd meter met een tolerantie van millimeters op zijn plek brengen.

De uitdagingen bij het vervoer van de tunnelelementen zijn in de loop der jaren fors toegenomen. De eerste afzinktunnels werden nog in de directe omgeving van de afzinkplaats gebouwd. Al sinds de jaren zeventig van de vorige eeuw wordt voornamelijk gebruikgemaakt van een bouwdok bij Barendrecht. Dat betekende bijvoorbeeld voor de Wijkertunnel dat voor het eerst vervoer van tunnelelementen over de Noordzee en het Noordzeekanaal plaatsvond. Kort daarna werden de eerste tunnelelementen voor de Piet Heintunnel, gebouwd in Antwerpen, eveneens via de Noordzee naar Amsterdam vervoerd. Het waren belangrijke ervaringen voor latere projecten, zowel in eigen land als ver daarbuiten.

TTOW

De afdeling Tunneltechniek en ondergrondse werken (TTOW) van het Koninklijk instituut van ingenieurs (KIVI), opgericht in 1971, heeft een belangrijke rol gespeeld in de ontwikkeling en borging van de kennis over afzinktunnels. De oprichting van de sectie Tunneltechniek van het KIVI was een uitvloeisel van een internationale conferentie over tunnelbouw, geïnitieerd door de Organisation for economic co-operation and development (OECD), waar werd gepleit voor meer internationale samenwerking. De Nederlandse afdeling zou een vehikel zijn om samenwerking met andere landen tot stand te brengen. In 1981 leidde de toevoeging ‘en ondergrondse werken’ tot de huidige naam.

Kennis delen en samen nieuwe wegen onderzoeken, waren in de beginjaren van TTOW de belangrijkste drijfveren. Zo werden in de begintijd studies uitgevoerd naar de waterdichtheid van afgezonken tunnels, de invloed van temperatuurschommelingen op de tunnelconstructie, retourbemaling, ventilatie van railtunnels en de kosten van verschillende bouwmethodes. In de loop der jaren werd bijvoorbeeld ook het voorkomen van opdrijven van zinktunnels in teamverband bestudeerd.

“Het was een beetje een zoektocht om afspraken op het gebied van ondergronds bouwen op papier te krijgen”, vertelde prof. ir. A. (Toon) Glerum in een interview ten behoeve van het boek 40 jaar passie voor ondergronds bouwen in 2011. “We zochten naar normen voor gebieden waar we nog niets van wisten. Daarin speelde ook de internationale component. Via de International tunneling association (ITA) werkten we mee aan het opstellen van regels.” In de beginjaren speelde Nederland al een relatief grote rol binnen de ITA. In 1971 telde Nederland al zeven verkeerstunnels en twee railtunnels, waarvan de meeste waren gerealiseerd met de afzinkmethode. In 1996 werd het aantal afzinktunnels wereldwijd geschat op 81, waarvan 21 in Nederland. Professor Glerum: “In die tijd was het afzinken een zaak van de Amerikanen en van ons. Maar het waren compleet naast elkaar bestaande werelden. Nadat de Denen de Maastunnel met betonnen elementen hadden aangelegd, zijn we in Nederland op die voet verdergegaan. In de Verenigde Staten was het altijd staal.”

Invaren stalen zinktunnel bij Boston. (Foto: bron onbekend)

Gemeenschappelijke praktijkonderzoek boortunnels (GPB)

Zoals de binnen TTOW verenigde ingenieurs gezamenlijk aan kennisontwikkeling werkten ten aanzien van onder andere afzinktunnels, zo werd vanaf 1995 binnen het COB in gezamenlijkheid gewerkt aan de kennis die nodig was om in slappe bodem geboorde tunnels te kunnen verwezenlijken. Peter van den Berg, nu directeur infrastructuur bij Deltares, was vanuit zijn geotechnische achtergrond destijds nauw betrokken bij het Gemeenschappelijke praktijkonderzoek boortunnels (GPB): “Het platform GPB ontstond rond 2000. Daarvoor was ik al betrokken bij onderzoek rond de Tweede Heinenoordtunnel en de Botlekspoortunnel. Daar ging het nog met name om geotechnisch onderzoek, tunnelconstructie en boortechniek. De daar opgedane kennis kon ik later oppakken binnen het platform GPB. Het was een heel mooi onderzoeksproject. Er waren zes projecten (de Westerscheldetunnel, de Sophiaspoortunnel, de tunnel onder Pannerdensch Kanaal, de Boortunnel Groene Hart, de Noord/Zuidlijn en RandstadRail) van waaruit gezamenlijk onderzoek werd geïnitieerd. Wat in het ene project werd uitgeprobeerd, konden we verder brengen in het volgende project. De projecten konden als het ware steeds op elkaars schouders gaan staan. Ik gebruik het voorbeeld van deze vorm van praktijkonderzoek nog heel vaak. Deze manier van werken, waarbij je projecten direct in je onderzoek betrekt en ruimte hebt om te experimenteren, levert namelijk heel veel op. Niet alleen qua kennis, maar ook omdat er tussen aannemers, opdrachtgevers en ingenieursbureaus automatische kennisdeling ontstaat.”

Peter van den Berg vervolgt: “Het was een mooie, rijke tijd. We hebben het boren in slappe bodem met het GPB enorm snel kunnen ontwikkelen. Daarbij ging het overigens niet alleen om het door het COB gefaciliteerde onderzoek, maar ook om de samenwerking met het buitenland, zoals bijvoorbeeld Japan. Daar was ondergronds bouwen al veel meer gemeengoed. Zo werkte het COB nauw samen met de Japan tunnel association (JTA) en had GeoDelft (nu Deltares) een intensieve uitwisseling met het Geo-research institute in Osaka. De kennis en ervaring daar hebben we geabsorbeerd. Het mooie aan de Japanse aanpak was dat daar heel veel meetgegevens werden verzameld. In Nederland willen we begrijpen wat er precies gebeurt en bouwen we daar modellen op. Met de Japanse aanpak konden die modellen ook gevalideerd worden. Daar ontstond dus een mooie complementariteit.”

“Met het onderzoek in het kader van het GPB hebben we het gecontroleerd boren in slappe bodem in de vingers gekregen. Dat hebben we bijvoorbeeld teruggezien bij het boren van de Noord/Zuidlijn. In dat project is zoals bekend wel een en ander misgegaan, maar dat had niets te maken met het boorproces. Dat is gecontroleerd verlopen. Dat is een resultaat dat mede te danken is aan het GPB.” De aanpak zoals in het GPB paste volgens Peter van den Berg in de ontwikkelingsfase van geboorde tunnels op dat moment. “Voor zo’n programma heb je wel projecten nodig die dergelijke vragen hebben. Dat is op technisch vlak nu weer aan de orde, maar de vragen zijn anders. We hebben kennisleemtes op het gebied van deformaties, degratie en voegen. De vragen anno 2020 gaan ook over andere aspecten, zoals de inpassing in de omgeving en de klimaatbestendigheid van infrastructuur.”

Razendsnelle ontwikkeling

De ervaringen in Japan zorgden ervoor dat men het in Nederland ook aandurfde om tunnels te gaan boren. Na de eerste praktijkproef ging het snel. In de vijftien jaren die daarop volgden, werden tien tunnels geboord. Daarbij werd de techniek van het boren in slappe bodem per project verder vervolmaakt. Indachtig de Nederlandse waterbouwtraditie, werden innovatieve oplossingen niet geschuwd. De tweede geboorde tunnel, de Westerscheldetunnel tussen Zeeuws-Vlaanderen en Zuid-Beveland, was met zestig meter meteen een van de diepste geboorde tunnels ter wereld.

Met de sinds 1995 opgedane ervaring heeft Nederland zich razendsnel ontwikkeld in de nichemarkt voor boren in slappe bodem. Nederlandse ingenieursbureaus kunnen vanuit hun gecombineerde kennis over zink- en boortunnels op basis van de omstandigheden en de vraag van de klant een afgewogen keuze maken voor de ene of de andere techniek. Op die manier heeft ook de kennis van tunnelboren een weg naar het buitenland weten te vinden.

Landtunnels

De behoefte aan ‘nieuwe’ ruimte in steden heeft geleid tot steeds meer ondergrondse infrastructuur, zoals weg- en spoorverbindingen die niet per se ondergronds hoeven vanwege een obstakel als een rivier of een bestaande spoorlijn, maar waar voor ondergronds wordt gekozen omdat er bovengronds geen ruimte is, of de impact van infrastructuur op de leefomgeving te groot zou zijn. In die gevallen komen ondergrondse weg- en spoortunnels nadrukkelijk in beeld. Niet alleen in de grote steden in de Randstad, maar ook steeds vaker daarbuiten.

Bij de Sijtwendetunnel (Leidschendam-Voorburg) en de overkapping Barendrecht werd voor het eerst gekozen voor het ondergronds brengen van infrastructuur om de stad te helen. Bekende recente voorbeelden zijn Spoorzone Delft, de Leidsche Rijntunnel bij Utrecht en de Willem Alexandertunnel in Maastricht. In feite zijn alle locaties waar aaneengesloten stedelijke gebieden doorkruist worden door wegen en/of spoorlijnen, in potentie gebieden waar landtunnels een oplossing kunnen zijn.

Door het ondergronds brengen van de spoorlijn in Delft is een barrière in de stad weggenomen. (Foto: Flickr/Wattman)

Nieuwe uitdagingen

Tunnelprojecten zijn per definitie complex, waarbij naast verschillende overheden (Rijk, provincie en gemeenten) ook veel andere belanghebbenden zijn betrokken. De plaatselijke omstandigheden, eisen vanuit wet- en regelgeving en wensen van betrokkenen zijn van grote invloed op de te kiezen technische oplossing. De tunnelsector staat allang niet meer voor alleen technische uitdagingen. Het wordt steeds ingewikkelder om ondergrondse infrastructuur aan te leggen, te onderhouden en te renoveren. Sinds in 1995 het COB werd opgericht om kennisontwikkeling rondom het boren van tunnels in slappe bodem te realiseren, zijn er steeds weer andere uitdagingen de boventoon gaan voeren.

De verbreding van de kennisvraag werd de afgelopen vijfentwintig jaar niet alleen ingegeven door de complexiteit van tunnelprojecten. Er waren ook externe ontwikkelingen die tot grote veranderingen hebben geleid. Zo ontstond er na een brand in de Mont Blanctunnel op Europees niveau nieuwe wetgeving, die er in Nederland toe leidde dat niet alleen nieuwe, maar ook bestaande tunnels aan nieuwe voorschriften moesten voldoen. Problemen met openstellingsvergunningen als gevolg van veiligheidseisen en de complexiteit van de tunnelinstallaties leidden tot de Landelijke Tunnelstandaard (LTS). En in het afgelopen decennium groeide het besef dat de beschikbaarheid van het bestaande tunnelareaal onder druk zou komen te staan als gevolg van noodzakelijke renovaties. Deze ontwikkelingen hebben veel invloed op de kennisvragen die bij het COB geadresseerd worden.

Focus op veiligheid

De extra aandacht voor tunnelveiligheid zoals vastgelegd in de Wet aanvullende regels veiligheid wegtunnels (Warvw), was een rechtstreeks gevolg van een aantal branden in Alpentunnels rond de eeuwwisseling, waarbij tientallen doden vielen. Naar aanleiding van die rampen stelde de Europese Unie een bindende richtlijn op. Al in 2001 kwamen de ministers van verkeer van Oostenrijk, Frankrijk, Duitsland, Italië en Zwitserland bij elkaar om de veiligheidseisen voor tunnels te harmoniseren. Op Europees niveau kwam men tot de conclusie dat ‘tunnelveiligheid een aantal maatregelen vereist, onder meer met betrekking tot geometrische vorm en ontwerp van de tunnel, beveiligingsapparatuur inclusief verkeerstekens, verkeersbeheer, training van alarmdiensten, interventieprogramma’s, informatie voor gebruikers over gedrag in tunnels en betere communicatie tussen de verantwoordelijke autoriteiten en alarmdiensten zoals politie, brandweer en reddingsteams’.

De in 2004 gepubliceerde richtlijn was van toepassing op ‘alle tunnels in het trans-Europese wegennet van meer dan 500 meter lang, ongeacht of deze in gebruik, in aanbouw, dan wel in de ontwerpfase zijn’. In Nederland werd daar anders over gedacht. In de Warvw, die in 2006 werd aangenomen, is sprake van tunnels langer dan 250 meter, waarbij overigens wel werd bepaald dat tunnels van voor 2006 langer dan 500 meter uiterlijk in 2014 aan de nieuwe wet zouden moeten voldoen en dat voor tunnels langer dan 250 meter 2019 als uiterste datum zou gelden.

Landelijke Tunnelstandaard

Eind 2008 ontstonden problemen rond de openstelling van de Roer- en Swalmentunnel bij Roermond. Omdat technische installaties niet op tijd af waren, kon het bevoegd gezag de tunnels slechts gedeeltelijk openstellen. “Die situatie was de aanleiding voor wat de Landelijke Tunnelstandaard (LTS) is geworden”, weet Ronald Gram van Covalent, die van het begin af aan een rol speelde in de totstandkoming en implementatie van de LTS.

“Hoogleraar ondergronds bouwen Bandy Horvath werd naar aanleiding van de situatie rondom de Roer- en Swalmentunnel om advies gevraagd. De conclusie was dat het niet om een technisch, maar om een organisatorisch probleem ging. Horvath en zijn commissie adviseerden om een tunnelregisseur aan te stellen die mandaat moest hebben van zowel de opdrachtgever als de opdrachtnemer. En zo is het ook gebeurd. Hans Ruijter werd aangesteld als tunnelregisseur voor die projecten. Ik werd vanuit Rijkswaterstaat als technische man aan het team toegevoegd. Al snel bleek dat de problematiek bij meer tunnels speelde. Er waren op dat moment vijf tunnelprojecten in verschillende ontwikkelingsfases, waar vergelijkbare problemen speelden of dreigden te gaan spelen. Het ging om de A2 Maastricht, Combiplan Nijverdal, de Tweede Coentunnel, de Leidsche Rijntunnel en de Ketheltunnel in de A4.”

Het inzicht dat we dit niet per tunnel moesten oplossen, maar met een brede oplossing moesten komen, leidde tot het idee van een landelijke standaard.

“Uit een quickscan bleek inderdaad dat de risico’s bij die projecten vergelijkbaar waren. De opdracht aan Hans Ruijter werd verbreed en hij werd landelijk tunnelregisseur. Het inzicht dat we dit niet per tunnel moesten oplossen, maar met een brede oplossing moesten komen, leidde tot het idee van een landelijke standaard. Daarin moest worden beschreven wat nodig was om een tunnel veilig in gebruik te kunnen stellen, aangevuld met een convenant met betrekking tot het voorzieningenniveau, zodanig dat een en ander zo ingepast zou kunnen worden in de nieuwe Warvw. Op basis van die uitgangspunten is de LTS geschreven en vervolgens meteen getoetst in de praktijk van projecten. De Tweede Coentunnel is daar uiteindelijk buiten gebleven, omdat openbreken van het contract tot te grote risico’s zou leiden, maar de andere vier projecten voldeden wel om de LTS te vervolmaken.”

Ronald Gram vervolgt: “Met de LTS ligt er een basis met aanknopingspunten als je een nieuwe tunnel wilt bouwen of er een wilt renoveren. De standaard biedt veel handvatten. Hoe controleer je de techniek en hoe toepassing in bediening en beheer? Je hoeft niet alles opnieuw te verzinnen.”

“Achteraf kun je beredeneren dat veiligheid zo’n belangrijk onderwerp is geworden, doordat men onzeker was. In de periode 2005-2009 zorgde een omwenteling bij Rijkswaterstaat ervoor dat men de gewenste functie ging omschrijven, in plaats van rechtstreeks aansturen. Dat betekent dat je op een heel andere manier moet aantonen dat je aan de eisen hebt voldaan. De LTS was in feite het antwoord van opdrachtgevers en opdrachtnemers om aan de onzekerheid die daaruit volgde, een einde te maken.”

Tunnelprogramma

Een andere kijk op veiligheid, samenwerken in projecten, ruimtedruk, mobiliteitsdruk, smart mobility, big data, de veranderende overheid, de mondige burger, de energietransitie en klimaatadaptatie. Dat zijn tegenwoordig de ontwikkelingen die op een of andere manier deel zijn gaan uitmaken van de kennisvraag met betrekking tot tunnels, zo is geconstateerd bij het formuleren van een langetermijnvisie op tunnels in 2016. Inmiddels is het daaruit ontstane tunnelprogramma volop in uitvoering.

De komende tien jaar staan er zo’n dertig tunnelprojecten (nieuwbouw en renovatie) op de agenda. Het is opnieuw belangrijk dat de krachten worden gebundeld. In het tunnelprogramma wordt gewerkt aan onderzoeksprojecten die ervoor zorgen dat de praktijkprojecten met minder hinder en meer waarde gerealiseerd kunnen worden. De kennisvraag is dus anders dan 25 jaar geleden, maar de gezamenlijke precompetitieve aanpak die in 1995 is gekozen om kennishiaten snel en adequaat in te vullen, is anno 2020 nog steeds de basis voor de succesvolle aanpak van het COB.

Antwerpen krijgt dubbeldekstunnel onder havens

Een brug om de files op de Antwerpse ring te verminderen en de havens beter te ontsluiten haalde het niet. En het alternatief, een afzinktunnel, paste niet binnen het budget. Een dikke laag Boomse Klei biedt de uitweg. Nu komt er een dubbeldekstunnel, gebouwd volgens de wanden-dakmethode, met diepwanden in de ondoorlatende kleilaag. Een oplossing die bijna een half miljard euro goedkoper is dan de afzinktunnel.

Antwerpen zucht al decennia onder een enorme verkeersdruk. Dagelijks passeren honderdduizenden auto’s de stad, waaronder een fors aantal vrachtwagens. Dat zorgt elke dag voor lange files, geluidsoverlast en luchtverontreiniging. Om deze problemen op te lossen, zoeken verkeerskundigen al heel lang naar opties om de ringweg – die tot nu toe geen ring is – te sluiten. Bij een gesloten ring kan het verkeer zich beter over het wegennet verdelen, wat leidt tot minder files. Verder zorgt het sluiten van de ring aan de westzijde van de stad voor een betere ontsluiting van de havens.

Geen Lange Wapper of afzinktunnel

Een paar jaar geleden leek de oplossing gevonden. Het plan was om een bijna twee kilometer lange dubbeldekstuibrug aan te leggen, de Lange Wapper genoemd, over het Albertkanaal en de aangrenzende havens (Straatsburgdok en Amerikadok), richting het nieuw te bouwen verkeersknooppunt Oosterweel. In een referendum stemden de Antwerpenaren echter tegen dit plan.

“Toen bleek dat de brug niet haalbaar was, is in 2010 als alternatief een ontwerp gemaakt voor een dubbele afzinktunnel met vier keer twee rijstroken die min of meer het tracé van de brug volgde”, vertelt Frank Kaalberg ontwerpmanager van studiebureau RoTS (Rechteroever TunnelSpecialisten), dat bestaat uit een combinatie van Grontmij en Witteveen+Bos. “Door de Beheersmaatschappij Antwerpen Mobiel werd ons in 2012 gevraagd dit ontwerp voor de Oosterweelverbinding kritisch te bekijken en te zoeken naar optimalisaties én een besparing van bijna een half miljard euro. Na een grondige review van het ontwerp concludeerden we dat het een goed plan was, maar inderdaad niet voldeed aan de economische eisen.”

Brainstormsessie

“Vervolgens hebben we een brainstormsessie gehouden om te zien op welke punten we het ontwerp en de bouwmethode konden optimaliseren en hoe we de bouwkosten konden reduceren. Ook hebben we gekeken hoe we de hinder voor de omgeving en de scheepvaart tijdens de bouw zouden kunnen beperken. Tijdens die sessie kregen we het idee om de twee tunnelelementen – met elk twee buizen – niet naast elkaar, maar op elkaar te plaatsen. Als afzinktunnel zou dat echter niet gaan. Toen beseften we dat de dikke laag Boomse Klei de mogelijkheid biedt om met diepwanden een dubbeldeks cut-and-covertunnel te maken zonder dat een kostbare onderwaterbetonvloer met trekankers nodig is. De klei die daar vanaf circa twintig tot dertig meter diepte in de ondergrond zit, is namelijk heel stevig en vrijwel waterondoorlatend.”

(Beeld: Beheersmaatschappij Antwerpen Mobiel / RoTS)

Aanpak

Kaalberg vervolgt: “Om zo’n tunnel onder de havens te kunnen bouwen, moet eerst een tijdelijke kistdam worden gemaakt. Daarvoor worden vanaf pontons damwanden tot een diepte van circa 25 tot 30 meter aangebracht, net in de Boomse Klei. Vervolgens wordt de ruimte tussen de damwanden opgevuld met zand. Daarna moet als het ware worden gespeeld met de grondwaterstand in de kistdam om de damwanden goed te ‘trimmen’. Als dat is gebeurd, kunnen de diepwanden worden gemaakt. Ze worden 1,2 meter dik en komen tot een diepte van ongeveer 43 meter. Ze staan dus voor een groot deel in de Boomse Klei.”

Fasering Amerikadok, klik op de afbeelding voor een grotere versie. (Tekeningen: RoTS)

“Na de buitenwanden worden de wanden van het middenkanaal van de tunnel gemaakt. Deze worden alternerend als diepwand uitgevoerd: dan weer wordt over een bepaalde lengte de linkerwand gemaakt, en dan weer alleen de rechter. Later worden de ontbrekende delen van de middenwanden met blokken gipsbeton gebouwd. Dat is niet alleen aanmerkelijk goedkoper, maar zorgt er ook voor dat de explosiebestendigheid van de tunnel toeneemt. Bij een eventuele explosie bezwijken de gipsbetonwanden vrij eenvoudig, wat zorgt voor een volumetoename en daarmee voor een explosiedrukvermindering.”

“Aangezien het tunneldak op een diepte van ongeveer acht meter onder de waterspiegel van het Albertkanaal komt, worden de diepwandsleuven niet helemaal tot bovenaan volgestort met beton. De bovenste acht meter, waar geen wapening zit, wordt gevuld met los materiaal dat later weer eenvoudig te verwijderen is. Als alle diepwanden gereed zijn, wordt een deel van het zand weggegraven, het grondwater weggepompt en worden tijdelijke stempels geplaatst. Vervolgens worden van boven naar beneden het dak en de vloeren gemaakt. Aantrekkelijk daarbij is dat het dak direct op het harde zand kan worden gestort.”

Kaalberg vervolgt: “Als het dak gereed is, wordt de grond eronder weggegraven, worden weer tijdelijke stempels geplaatst en de eerste vloer gemaakt. Voor de tweede vloer volgen deze stappen nog een keer. Zodra de hele tunnelconstructie klaar is, wordt een laag zand aangebracht op het tunneldak. Daarna worden de damwanden weggehaald en is de onder water liggende cut-and-covertunnel een feit. In grote lijnen gaan we voor het gehele tunneltracé uit van deze werkwijze, maar er zijn nog wel een paar locaties waar het iets gecompliceerder is. Een mooi voorbeeld is de plek waar de tunnel het voormalige Stadsdroogdok kruist.”

Oplossingen

“Ter hoogte van het voormalige Stadsdroogdok ligt op de bodem nog de zes meter dikke betonnen vloerplaat van het droogdok, vrijwel precies op de plek waar de tunnel moet komen. Die constructie moet worden verwijderd. Om dat te kunnen doen, hebben we een aanpak bedacht waarbij een bouwput wordt gemaakt en eerst alleen aan de buitenkant van het dok in een smalle kistdam een diepwand wordt aangebracht. In het huidige ontwerp wordt de andere kant van de bouwput ter plekke van het historische pomphuis met vriestechnieken afgesloten. Dat gebeurt om het gebouw te sparen en de overlast voor het restaurant in het pomphuis te minimaliseren. Als de bouwput dicht is en tijdelijke stempels geplaatst zijn, kan de dikke betonconstructie worden gesloopt. Vervolgens wordt de kuip weer gevuld met zand voor het aanbrengen van de andere diepwanden, waarna de tunnel volgens de ‘normale’ manier ‘onderdaks’ wordt afgebouwd.”

“Iets meer naar het oosten kruist de tunnel de Straatsburgbrug. Daar hebben we een oplossing moeten bedenken om een brugpijler tijdelijk te ondersteunen, zodat hij later op het tunneldak kan komen te staan, boven de middenwand. Voor de kruising met de Noorderlaanbrug – die nog iets oostelijker ligt – hebben we een vergelijkbaar probleem moeten oplossen. Iets voorbij deze brug kruist de tunnel het Albertkanaal waarna hij aansluit op het noordelijke deel van de ringweg. De kruising met het Albertkanaal wordt in twee stappen gebouwd, eerst de ene helft en dan de andere. Op die manier ondervindt de scheepvaart zo min mogelijk hinder.”

Design by testing

Aan het vernieuwende ontwerp van RoTS is veel denk- en rekenwerk voorafgegaan. Volgens Kaalberg was dat echter niet voldoende om tot een goed en uitvoerbaar ontwerp te komen: “Met vakmanschap, creativiteit en digitale rekentools kun je een heel eind komen, maar er zijn altijd onderdelen op het raakvlak van geotechniek en constructies die lastig zijn te kwantificeren. We weten bijvoorbeeld niet zeker hoe groot de invloed is van de zwel van de Boomse klei op constructies. Je kunt dan twee dingen doen: extra maatregelen treffen om de risico’s voldoende af te dekken of een proef doen om te zien hoe het in de praktijk uitvalt. Ik ben groot voorstander van de tweede optie, ook wel ‘design by testing’ genoemd. Door proeven te doen, weet je zeker of je aanpak straks werkt en voorkom je dat er onnodige kosten worden gemaakt. Aangezien er op grote delen van dit tunneltracé onzekerheden spelen, is besloten om hier, net als bij de Noord/Zuidlijn, van deze ontwerpfilosofie uit te gaan.”

“In een verloren hoekje naast de bestaande ringweg hebben we bijvoorbeeld getest of het lukt om damwanden aan te brengen tot een diepte van 27 meter. Op een groot deel van het tracé bestaat de ondergrond namelijk uit glauconiethoudend zand, en het is bekend dat dit zand soms tot problemen leidt tijdens het heien. Bij de proef deden deze problemen zich inderdaad voor, maar met enige aanpassingen kregen we de damwanden toch op diepte.”

Een andere proef moet duidelijk maken hoe de Boomse Klei zich rondom de diepwanden en onder de onderste tunnelvloer gedraagt tijdens de bouw en als de tunnel gereed is. Kaalberg: “Naast het zwelonderzoek gaan we met deze proef na of de wanden echt tot een diepte van 37 meter moeten worden gemaakt of misschien minder lang kunnen. Om beide aspecten te onderzoeken, hebben we een proefbouwkuip gemaakt met damwanden – met diepwanden zou het te duur worden – waarbij we eerst een stuk grond hebben afgegraven om op de gewenste diepte te komen. Met onder andere waterspannings- en extensometers volgen we nu het gedrag van de klei tijdens de ontgraving. De proefput is eind oktober op diepte en dan weten we meer.”

Onderwaterbumper

“Een onderdeel dat we nog verder moeten uitzoeken betreft de aanvaarbeveiliging. In het Amerikadok moeten grote zeeschepen een bocht maken. Als een schip daarbij uit koers raakt – wat een paar jaar geleden nog is gebeurd – kan het de tunnelconstructie beschadigen. Om dat te voorkomen, gaan we uit van een forse onderwaterberm. Toen uit simulaties bleek dat dit niet voldoende is, hebben we ook nog een onderwaterbumper ontworpen, een soort vangrail die bestaat uit twee rijen damwanden met daartussen onderwaterbeton en horizontale damwandplanken als extra versterking. Het havenbedrijf is hiermee nog niet akkoord gegaan, omdat ze vrezen dat deze bumper bij een eventuele aanvaring te veel schade aan de schepen veroorzaakt. Hier moeten dus nog ontwerpmodificaties worden doorgevoerd.”

Kostenreductie

Een belangrijk opgave voor RoTs was het vinden van besparingen. De tunnel mag namelijk niet duurder worden dan de eerder geplande tuibrug. Volgens Kaalberg is dat gelukt: “Uiteindelijk hebben we een kostenreductie van ruim 450 miljoen euro gerealiseerd. Door de tunnel te stapelen kunnen we bijvoorbeeld één vloer weglaten. Op een totale lengte van bijna twee kilometer scheelt dat enorm. Een andere grote besparing realiseren we doordat we het aantal benodigde kunstwerken bij de Oosterweelknoop hebben teruggebracht van veertien naar zes. Dat is mogelijk doordat de tunnelbuizen in ons ontwerp boven elkaar liggen en niet naast elkaar zoals bij de oorspronkelijke afzinktunnel. Daardoor zijn minder ingewikkelde vlechtpatronen nodig. Verder leidt ons ontwerp tot veel minder hinder voor de scheepvaart. Er hoeven bijvoorbeeld geen afzinksleuven te worden gebaggerd en er ontstaan ook geen stremmingen door de aanvoer van grote tunnelelementen.

Stationsgebied Rotterdam

Na jaren van bouwactiviteiten is op 13 maart 2014 het vernieuwde station Rotterdam Centraal geopend. Het station is niet alleen bovengronds drastisch aangepakt; ondergronds is er gewerkt aan de aansluiting van de RandstadRail op het Rotterdamse metronet, een nieuw ondergronds metrostation, een grote fietsenstalling onder het stationsplein, de nieuwe Weenatunnel en een vijflaags parkeergarage onder het nabijgelegen Kruisplein.

De grondige aanpak van Rotterdam Centraal is onderdeel van de Nieuwe Sleutelprojecten (NSP): integrale stedelijke projecten op en rond de Nederlandse stations met een HSL-aansluiting. Groeiende reizigersaantallen vormden de aanleiding voor de grootscheepse verbouwing van Rotterdam Centraal en omgeving. De verwachting is dat het aantal reizigers dat dagelijks gebruik maakt van dit vervoersknooppunt rond 2025 zal zijn toegenomen van de huidige 110.000 tot circa 320.000. De groei komt onder meer door de aansluiting op het Europese net van hogesnelheidstreinen en de aansluiting op de lightrailverbinding RandstadRail.

Boortunnel RandstadRail

RandstadRail is de lightrailverbinding tussen Rotterdam, Den Haag en Zoetermeer. Voor het traject tussen Rotterdam en Den Haag is voor een groot deel gebruik gemaakt van de Hofpleinlijn, de voormalige heavyraillijn van de NS. Alleen voor het laatste stuk naar Rotterdam Centraal is een nieuwe drie kilometer lange ondergrondse verbinding aangelegd. Deze bestaat uit twee enkelsporige tunnels die grotendeels als boortunnel zijn uitgevoerd. Deze geboorde tunnelbuizen hebben een buitendiameter van 6,5 meter.

De nieuwe verbinding takt ter hoogte van het Sint Franciscus Gasthuis af van de Hofpleinlijn en passeert vervolgens de spoorlijn Rotterdam-Gouda (de Goudse Lijn), de A20 en het Noorderkanaal. Halverwege het tunneltracé ligt het nieuwe ondergrondse station Blijdorp. Na dit station loopt de tunnel over ruim een kilometer onder de Statenweg en kruist vervolgens het NS-emplacement van station Rotterdam Centraal. Naast dit emplacement sluit RandstadRail aan op het metrostation Rotterdam Centraal en de metrolijn naar Rotterdam-Zuid.

Station Blijdorp. (Foto: Flickr/FaceMePLS)

De boortunnel van RandstadRail is aangelegd door Saturn v.o.f., een aannemerscombinatie bestaande uit Dura Vermeer en Züblin. Het ingenieursbureau van de gemeente Rotterdam deed het vooronderzoek, schreef de bestekken en deed de aanbesteding. Daarnaast heeft het ingenieursbureau zes stations en haltes in eigen huis ontworpen en gerealiseerd.

Aanvullende maatregelen

De geboorde tunnel ligt over vrijwel de gehele lengte in het pleistocene zand. Om dit te realiseren, is tot een diepte van dertig meter geboord. Bij de aansluiting van de boortunnel op de conventioneel gebouwde tunneldelen (de startschacht bij het Sint Franciscus Gasthuis, station Blijdorp en de ontvangstschacht bij Rotterdam Centraal, die alle drie in een open bouwput zijn gemaakt) liggen de tunnelbuizen voor meer dan de helft in relatief slappe kleilagen. Hier zijn aanvullende maatregelen getroffen om ervoor te zorgen dat de tunnel voldoende stabiel ligt. Bij de startschacht is over een lengte van circa zestig meter de slappe grond vervangen door verdicht zand. Aansluitend op dit stuk is de grond over een lengte van zeventig meter versterkt met ‘mixed in place’, een techniek waarbij cement in de grond wordt geïnjecteerd.

Bij de zuidelijke aansluiting van de tunnelbuizen op station Blijdorp bestaan de tunnelwanden over een lengte van ongeveer vijftig meter niet uit betonnen segmenten, maar uit stalen buizen. Voor de overgang van het beton naar het staal, is een kom-nok verbinding toegepast. Voor de aansluiting op de ontvangstschacht bij Rotterdam Centraal is zowel een stalen tunnellining als grondverbetering gebruikt. De grondverbetering is gedaan met jetgrouten.

Boorproces

Het boorproces is in december 2005 gestart nabij het Sint Franciscus Gasthuis, aan de noordzijde van Rotterdam. Vanaf hier is in zuidelijke richting geboord naar station Blijdorp en de ontvangstschacht bij Rotterdam Centraal. Nadat in voorjaar 2007 de eerste tunnelbuis gereed was, is de tunnelboormachine weer teruggebracht naar de startschacht voor het boren van de tweede tunnelbuis. Een jaar later was deze tunnelbuis ook klaar.

Metrostation Rotterdam Centraal

Om metrostation Rotterdam Centraal geschikt te maken voor de aansluiting op RandstadRail is in 2006 begonnen met de bouw van een nieuw station. Het eerste deel was eind september 2009 gereed en vervolgens is het oude, ruim veertig jaar oude station gesloopt om het laatste deel van het nieuwe station te kunnen maken. In augustus 2010 was ook dit deel klaar en sinds dat moment rijden er metro’s tussen het nieuwe metrostation en Den Haag.

Het nieuwe station heeft twee eilandperrons, drie sporen en is rechtstreeks bereikbaar vanuit de stationshal van het treinstation en via ingangen aan het Weena en de Conradstraat. Het is ontworpen door Maarten Struijs van Gemeentewerken Rotterdam en gebouwd door Mobilis|TBI. Het contrast met het oude ondergrondse station is groot. Dit station had één slecht verlicht eilandperron en twee sporen. Het nieuwe station heeft grote perrons, hoge plafonds en veel licht en ruimte.

Bouwmethode

Voor de bouw van het nieuwe metrostation is gekozen voor de wanden-dakmethode. Aan drie zijden zijn diepwanden gemaakt tot een diepte van ruim veertig meter. Op deze diepte ligt de zogeheten Laag van Kedichem, een vrijwel waterdichte kleilaag. Aan de vierde zijde kon geen diepwand worden gemaakt, omdat hier de metrotunnel lag van de lijn naar Rotterdam-Zuid. Bovendien zaten hier grondankers van nabijgelegen gebouwen in de grond. Om de bouwkuip toch te sluiten en vrij te houden van grondwater hebben de experts van Ingenieursbureau Rotterdam aan deze zijde met vloeibare stikstof en pekel een waterdichte ijswand gemaakt. Deze vrieswand van ongeveer 50 meter breed, 40 meter diep en ruim 2,5 meter dik was zodanig vormgegeven dat het metroverkeer er tijdens de bouw door kon rijden. De wand is bijna twee jaar in stand gehouden totdat de de vloer en de wanden van het nieuwe station gereed waren.
(Foto: Via buizen wordt koudemiddel rondgepompt om de grond te bevriezen, via Mobilis)

Fietsenstalling Rotterdam Centraal

Onder het stationsplein is een grote ondergrondse fietsenstalling gebouwd voor meer dan vijfduizend fietsen. Deze stalling heeft een directe verbinding met het ondergrondse metrostation. Gebruikers kunnen hier op de metro stappen of via dit station doorlopen naar trein, bus of tram. Net als het metrostation is de stalling ontworpen door architect Maarten Struijs en gebouwd door Mobilis|TBI. Licht en kleuren zorgen voor een prettige sfeer in de stalling. Het plafond, de kolommen en de wanden zijn wit. De vloer van de hoofdroute is rood, terwijl voor de gangen met de fietsenrekken de kleuren paars, blauw, groen, geel en oranje gebruikt zijn. Dit kleurgebruik maakt het eenvoudiger om je gestalde fiets terug te vinden.

Bouwmethode

Voor de stalling is gebruikgemaakt van de wanden-dakconstructie om overlast op straatniveau zo veel mogelijk te beperken. Aan de noordkant is voor de bouwkuip gebruikgemaakt van de damwanden van het metrostation, en aan de zuidkant van de damwanden van de nieuwe Weenatunnel.

Weenatunnel

Het Weena is een drukke oost-westverbinding voor autoverkeer. Om voor voetgangers een veilige oversteek tussen het stationsplein en het nieuwe Kruisplein te kunnen maken, was het noodzakelijk om al het autoverkeer op het Weena naar ondergronds te brengen. Hiervoor is de oude tweebaanstunnel vervangen door een nieuwe 350 meter lange tunnel met twee tunnelbuizen en totaal vier rijbanen.

De bouw vergde de nodige fasering om ervoor te zorgen dat de trams en het wegverkeer konden blijven rijden tijdens de bouwwerkzaamheden. Als eerste is een overkluizing gemaakt voor de tramsporen over het tunneltracé. Terwijl het verkeer gebruikmaakte van de bestaande tunnel, is aan de zuidzijde hiervan een nieuwe tunnel gebouwd. Toen deze klaar was, is het verkeer hier doorheen geleid en is de bestaande tunnel gesloopt en vervangen door een nieuwe. Vanuit de zuidelijke tunnelbuis loopt er een ondergrondse verbindingsweg naar de Kruispleingarage en de Schouwburgpleingarage.

Kruispleingarage

De Kruispleingarage, de diepste parkeergarage van Nederland, is eind 2013 opgeleverd. Het diepste punt van deze garage ligt op twintig meter beneden NAP. De parkeergarage ligt tegenover Rotterdam Centraal, is 150 meter lang, ruim 30 breed en telt vijf verdiepingen. Er kunnen 760 auto’s in. Het garage is ontworpen door gemeentearchitect Maarten Struijs, die ook de fietsenstalling en het metrostation onder Rotterdam Centraal ontwierp.

In het dak van de Kruispleingarage is een waterberging gebouwd om bij hevige buien water uit de Westersingel tijdelijk op te vangen. Stijgt het water in deze singel meer dan tien centimeter, dan stroomt een deel van het water de berging in. Voor de waterberging is het zogeheten watershellsysteem gebruikt. Dit systeem bestaat uit lichtgewicht koepelvormige elementen waarop een betonvloer wordt gestort. De elementen worden gedragen door kunststof poten die ervoor zorgen dat het gewicht van de vloer en de grond op de waterberging gelijkmatig wordt doorgegeven naar het dak van de parkeergarage.

De Kruispleingarage is bereikbaar vanuit de Weenatunnel. In deze tunnel is een afslag die toegang geeft tot een lange ondergrondse straat met aan het einde een rotonde. Via deze rotonde kunnen auto’s de Kruispleingarage in en ook de verderop gelegen Schouwburgpleingarage. Bovenop de garage ligt het autoluwe Kruisplein. Dit plein is als verbinding tussen binnenstad en station één van de belangrijkste pleinen van de stad.

Zuidasdok: vier opdrachtgevers, één projectorganisatie

Half maart is het Ontwerp Tracébesluit voor het project Zuidasdok vastgesteld. Het is een nieuwe mijlpaal in de ontwikkeling van de Zuidas en de bereikbaarheid van de noordelijke Randstad. Het Zuidasdok moet leiden tot betere bereikbaarheid en verdere ontwikkeling van de Zuidas tot toplocatie voor zowel werken als wonen en als verblijfsgebied. De bouw start in 2017.

Het Zuidasdok omvat verbreding, het deels ondergronds brengen van de A10 Zuid en uitbreiding van het station Amsterdam Zuid. De snelweg A10 krijgt in totaal acht rijstroken voor doorgaand verkeer en vier stroken voor bestemmingsverkeer. De weg komt ter hoogte van het huidige station over een lengte van een kilometer onder de grond te liggen. Zo ontstaat ruimte om station Amsterdam Zuid te laten uitgroeien tot een hoogwaardig openbaarvervoerknooppunt en kan er bovengronds een aaneengesloten woon-, werk- en winkelgebied ontstaan. Verbetering van de luchtkwaliteit als gevolg van het ondergronds brengen van een deel van de A10 maakt kwalitatief hoogwaardige woningbouw mogelijk.

Impressie centrumgebied Zuidas met de A10 in de huidige en toekomstige situatie. (Beeld: brochure Zuidasdok)

Het project, dat 1,9 miljard euro kost en circa tien jaar zal gaan duren, bestrijkt het gebied tussen knooppunt De Nieuwe Meer en knooppunt Amstel, een afstand van circa zes kilometer. Bij die knooppunten worden doorgaand en afslaand verkeer van elkaar gescheiden. Het gehele project wordt in alle opzichten integraal opgepakt. Ruimtelijk en functioneel, maar bijvoorbeeld ook ten aanzien van de veiligheid. Er is een projectorganisatie opgezet waarin deskundigen vanuit onder andere Rijkswaterstaat, ProRail en de gemeente Amsterdam hun plek hebben gevonden.

Het plangebied Ontwerptracébesluit. Het gearceerde deel betreft het Ontwerpbestemmingsplan. (Beeld: brochure Zuidasdok)

Integraal is noodzaak

Hans Versteegen, projectdirecteur: “De integrale aanpak is noodzakelijk. Geen enkele partij kan zelfstandig haar opgave realiseren. Wil je hier iets van de grond krijgen, dan moet je dat in gezamenlijkheid doen. In 2012 hebben de opdrachtgevers – het Rijk, de gemeente Amsterdam, de stadsregio en de provincie Noord-Holland – elkaar weten te vinden in een unieke oplossing, met name voor het bereikbaarheidsprobleem van verschillende vervoersmodaliteiten. De opdrachtgevers weerspiegelen de modaliteiten die erin zitten: het Rijk vanuit weg en spoor, de gemeente Amsterdam vanuit openbare ruimte en metro, en de provincie en de stadsregio vanuit de openbaarvervoerterminal (OVT). Voor de projectorganisatie en het slagen van het project is het cruciaal dat de opdrachtgevers elkaar blijven vinden.”

“De risicoverdeling is 75% Rijk en 25% gemeente. Dat is maar een deel van de gezamenlijkheid. Het gaat ook om de uitvoering. Daarvoor is een aparte projectorganisatie opgezet. Daarin zitten weliswaar ook mensen vanuit die organisaties, maar zij zitten daar niet als belangenbehartiger van hun moederorganisatie. Met de kennis en expertise van alle domeinen hebben we een integrale organisatie die werkt aan een integrale opgave. Daarvoor hebben we bewust gekozen. Want als je gaat organiseren in verschillende pakketten, gaat iedereen terug naar zijn eigen achterban en kom je telkens opnieuw in discussies terecht.”

Alleen gezamenlijk

“We werken op een postzegel. Dat betekent dat de belanghebbende opdrachtgevers elkaar bij elke beweging tegenkomen. Als iedereen het in zijn eigen domein zou organiseren, is dat niet alleen heel inefficiënt, maar creëer je ook teleurstelling. De partijen kunnen hun doelen alleen met hulp van de anderen bereiken. Alleen in gezamenlijkheid kom je tot resultaten. En dat betekent ook dat iedereen concessies moet doen. En soms af moet wijken van wat je idealiter zou willen. Je kunt de taart van ruimte niet groter maken. Op het moment dat een partij meer ruimte vraagt, gaat dat altijd ten koste van ruimte van de ander. Je moet dus allemaal een beetje inschikken. De onderhandelingen hebben tot consensus geleid. Hoofdopgave is dus om ervoor te zorgen dat die gezamenlijkheid intact blijft.”

Voor station Amsterdam Zuid, onder het Mahlerplein, komt een fietsgarage voor drieduizend fietsen en een waterberging. Het ontwerp is gemaakt door architect Paul van der Ree van Movares. BAM is verantwoordelijk voor de bouw, die half augustus 2015 begint. (Beeld: Movares)

SOS: Meer meten met infrarood

Hoe kan data helpen tunnels veiliger te maken? Bieden nieuwe technieken of inzichten kansen om de veiligheid te verhogen of de veiligheid op niveau te houden met hogere beschikbaarheid of tegen lagere kosten? Ontwikkelingen op ICT-gebied gaan snel. Meer rekenkracht en daaruit volgende snellere verwerking van data, maken het zinvol bestaande oplossingen tegen het licht te houden. In de Westerscheldetunnel is een proef gedaan met infraroodsensoren als basis voor het snelheidsonderschrijdingssysteem (SOS). Daaruit blijkt dat de beperkingen van bestaande systemen met detectielussen, kunnen worden weggenomen.

Het bedrijf Soltegro heeft op eigen initiatief een SOS ontwikkeld en vervolgens de N.V. Westerscheldetunnel bereid gevonden mee te werken aan een proefopstelling. “Ontwikkeling in eigen beheer is wellicht ongebruikelijk”, zegt commercieel directeur Jan-Martijn Teeuw van Soltegro, “maar past wel bij onze werkwijze. Wij positioneren ons tussen ingenieursbureaus en automatiseringbedrijven in. Bij ons werken veel ICT-specialisten, maar ook elektrotechnisch en werktuigkundig ingenieurs. Met die disciplines werken we op een integrale manier aan projecten. En dat brengt met zich mee dat wij ook anders tegen problemen aankijken.”

Manager systems engineering en innovatie Franc Fouchier legt uit wat dat in de praktijk inhoudt: “De ervaring die wij hebben opgedaan in de softwarewereld projecteren we op de civieltechnische wereld. Dat betekent dat je eerst een probleem goed analyseert zonder daarbij al oplossingsrichtingen in het achterhoofd te hebben en pas in tweede instantie kijkt naar de combinatie van technieken die je kunt inzetten om dat probleem op te lossen. In de praktijk is deze aanpak vaak niet mogelijk, omdat bepaalde oplossingen zijn voorgeschreven. Zo staat in de tunnelstandaard dat je voor snelheidsmeting inductielussen moet toepassen. In onze optiek heb je voor een optimale oplossing keuzevrijheid nodig. Daarom konden we het SOS dat we in de Westerscheldetunnel hebben getest ook alleen maar in eigen beheer ontwikkelen.”

“In onze optiek heb je voor een optimale oplossing keuzevrijheid nodig.”

Elk voertuig meten

Met een SOS kan worden gedetecteerd of de snelheid van voertuigen op een willekeurig punt te laag wordt en er daardoor gevaarlijke situaties ontstaan die bijvoorbeeld kunnen leiden tot kop-staartbotsingen. Het gebruik van inductielussen om snelheidsverschillen te detecteren kent een aantal beperkingen. Er wordt alleen gemeten op de plaats van de lus, en defecten aan een inductielus leiden bij vervanging vrijwel altijd tot verminderde beschikbaarheid van de tunnel. Jan-Martijn Teeuw: “Met onze sensoren zijn we in staat elk voertuig in de tunnel uniek te detecteren. Je volgt het bewegende object en dat biedt meer mogelijkheden. Je verzamelt meer informatie. Met behulp van software kun je detecteren of voertuigen afwijkend gedrag vertonen. Het gaat dus verder dan alleen detecteren of een willekeurig voertuig op een bepaalde plaats onder een minimumsnelheid komt. Bovendien kun je door bijvoorbeeld een kapotte sensor een meting missen en nog steeds een betrouwbaar resultaat hebben.”

In de Westerscheldetunnel is het systeem van Soltegro op een deel van het traject geïnstalleerd, naast het bestaande systeem. De wegverkeersleiders hebben beide systemen gemonitord en Soltegro feedback gegeven. In een halfjaar tijd zijn enorm veel meetgegevens verzameld. Daaruit blijkt dat de betrouwbaarheid van het systeem bijzonder hoog is. De mensen van de Westerscheldetunnel hebben beaamd dat het goed heeft gefunctioneerd. “De betrouwbaarheid is cruciaal”, vindt Jan-Martijn Teeuw. “Als systemen te vaak valse meldingen geven, is het gevolg dat wegverkeersleiders het niet meer serieus nemen en ook niet reageren als er wel iets aan de hand is. Dan neemt de veiligheid per definitie af.”

Tijd in plaats van afstand

Implementatie van een SOS met infraroodsensoren vindt, net als bij gebruik van detectielussen, plaats op basis van een risicoanalyse. Bij een steile uitrit, zoals bij de Westerscheldetunnel, mag je verwachten dat de snelheid van vrachtwagens sneller terugloopt. In zo’n situatie zal bij beide systemen sprake zijn van meer meetpunten dan in een vlak deel van de tunnel. Het verschil zit in de meeteenheid. Bij gebruik van detectielussen is er per definitie sprake van afstand. Met de sensoren wordt gemeten in tijd, en is het ook mogelijk om meer dan alleen snelheidsverschillen te detecteren.

Franc Fouchier: “Met infrarood detecteren we bijvoorbeeld ook of al het verkeer ineens naar één baan opschuift. Dat kan voor de wegverkeersleiding een teken zijn dat er sprake is van bijvoorbeeld afgevallen lading, langzaam rijdend verkeer of stilstand. En de data die je verzamelt kun je ook gaan gebruiken om verkeersbewegingen te voorspellen. Het is voorstelbaar dat je met dit systeem ruim van tevoren kunt voorspellen waar en wanneer filevorming ontstaat en dat je vanuit het systeem vervolgens meteen deze informatie naar in-carsystemen verstuurt. Daar kun je overigens de wegverkeersleider als buffer tussen zetten. Het is maar net wat de wegbeheerder wil.”

Gebruikersinterface van het ontwikkelde SOS. (Beeld: Soltegro)

Waar gaat dat naartoe?

“In de wereld van het ‘Internet of Things’ krijgen we steeds meer situaties waarin systemen beslissingen gaan nemen”, vervolgt Franc. “Wij verwachten dat het die kant op gaat. Vandaar onze integrale visie en de keuze om niet de omgeving te detecteren, maar het object dat in die omgeving beweegt. De informatie die door het object wordt gegenereerd, opent nieuwe toepassingsmogelijkheden.” Jan-Martijn Teeuw: “We richten ons nu in eerste aanleg op tunnels, maar er kan natuurlijk veel meer met deze techniek. Je kunt er bijvoorbeeld ook mee detecteren hoe voertuigen in een parkeergarage bewegen. Voor ons is de volgende stap om in gesprek te gaan met beheerders van tunnels waar detectielussen echt niet voldoen. In de praktijk van de tunnelstandaard zie je nu al wel dat er ruimte komt voor projectspecifieke afwijkingen en er wordt al gesproken in termen van ‘standaard of gelijkwaardig’. Daar liggen kansen voor deze vorm van detectie, maar formeel zou de toepassing nu alleen kunnen in niet-rijkstunnels.”

Dit was de Onderbreking Tunnels en veiligheid

Bekijk een ander koffietafelboek: