Loading...

De Onderbreking

Tunnels en veiligheid

Tunnels en veiligheid

Antwerpen krijgt dubbeldekstunnel onder havens

Velsen, Velsertunnel

Visie van… Erik Lousberg

Zwemmen in een schuilkelder

Afstudeeronderzoek: veilige tunnel door snelle branddetectie

Lokale tunnel bediend vanuit verkeerscentrale

Amsterdam, Eerste Coentunnel

Onderbreking Tunnels en veiligheid

Chaos creëren om orde te scheppen

Kennisbank

Tunnels en veiligheid

Tunnels zijn wellicht de bekendste voorbeelden van ondergrondse bouwwerken. Het begon in Nederland met afgezonken tunnels om watergangen te kruisen, inmiddels worden ook boor- en landtunnels breed toegepast. Ontwikkelingen in de praktijk vragen om ontwikkeling in kennis en kunde. Ook op het gebied van veiligheid: ondergronds is het waarborgen van veiligheid vaak complexer dan boven de grond.

Nederland is specialist in afgezonken tunnels. Toch is er ook op dit gebied nog voldoende bij te leren. Gezien de hoge leeftijd van de meeste Nederlandse zinktunnels, is renovatie bijvoorbeeld een actuele en dringende opgave, waarover nog veel vragen leven. Daarnaast neemt de complexiteit bij het realiseren van geboorde tunnels toe: in stedelijke gebieden is het prettig als wegen en spoorlijnen ondergronds gaan, maar er is weinig ruimte om te bouwen en de hinder moet minimaal zijn. We willen in complexere situaties ondergronds bouwen, nog dieper en nog dichter bij de bestaande bebouwing.

Veiligheid is dan ook onlosmakelijk met ondergronds bouwen verbonden. Het werken in de grond heeft al snel effect op de omgeving. Bovendien moet de constructie na oplevering veilig te gebruiken zijn. Dat is op zichzelf al een opgave, maar een bijkomende uitdaging is het vooraf aantoonbaar maken van veilig gebruik, en dat in een complex belangenveld. De laatste jaren leidde dat bij tunnels soms tot problemen. Samen met het netwerk wil het COB ervoor zorgen dat nieuwe tunnels voortaan opengaan zonder gedoe.

Antwerpen krijgt dubbeldekstunnel onder havens

Een brug om de files op de Antwerpse ring te verminderen en de havens beter te ontsluiten haalde het niet. En het alternatief, een afzinktunnel, paste niet binnen het budget. Een dikke laag Boomse Klei biedt de uitweg. Nu komt er een dubbeldekstunnel, gebouwd volgens de wanden-dakmethode, met diepwanden in de ondoorlatende kleilaag. Een oplossing die bijna een half miljard euro goedkoper is dan de afzinktunnel.

Antwerpen zucht al decennia onder een enorme verkeersdruk. Dagelijks passeren honderdduizenden auto’s de stad, waaronder een fors aantal vrachtwagens. Dat zorgt elke dag voor lange files, geluidsoverlast en luchtverontreiniging. Om deze problemen op te lossen, zoeken verkeerskundigen al heel lang naar opties om de ringweg – die tot nu toe geen ring is – te sluiten. Bij een gesloten ring kan het verkeer zich beter over het wegennet verdelen, wat leidt tot minder files. Verder zorgt het sluiten van de ring aan de westzijde van de stad voor een betere ontsluiting van de havens.

Geen Lange Wapper of afzinktunnel

Een paar jaar geleden leek de oplossing gevonden. Het plan was om een bijna twee kilometer lange dubbeldekstuibrug aan te leggen, de Lange Wapper genoemd, over het Albertkanaal en de aangrenzende havens (Straatsburgdok en Amerikadok), richting het nieuw te bouwen verkeersknooppunt Oosterweel. In een referendum stemden de Antwerpenaren echter tegen dit plan.

“Toen bleek dat de brug niet haalbaar was, is in 2010 als alternatief een ontwerp gemaakt voor een dubbele afzinktunnel met vier keer twee rijstroken die min of meer het tracé van de brug volgde”, vertelt Frank Kaalberg ontwerpmanager van studiebureau RoTS (Rechteroever TunnelSpecialisten), dat bestaat uit een combinatie van Grontmij en Witteveen+Bos. “Door de Beheersmaatschappij Antwerpen Mobiel werd ons in 2012 gevraagd dit ontwerp voor de Oosterweelverbinding kritisch te bekijken en te zoeken naar optimalisaties én een besparing van bijna een half miljard euro. Na een grondige review van het ontwerp concludeerden we dat het een goed plan was, maar inderdaad niet voldeed aan de economische eisen.”

Brainstormsessie

“Vervolgens hebben we een brainstormsessie gehouden om te zien op welke punten we het ontwerp en de bouwmethode konden optimaliseren en hoe we de bouwkosten konden reduceren. Ook hebben we gekeken hoe we de hinder voor de omgeving en de scheepvaart tijdens de bouw zouden kunnen beperken. Tijdens die sessie kregen we het idee om de twee tunnelelementen – met elk twee buizen – niet naast elkaar, maar op elkaar te plaatsen. Als afzinktunnel zou dat echter niet gaan. Toen beseften we dat de dikke laag Boomse Klei de mogelijkheid biedt om met diepwanden een dubbeldeks cut-and-covertunnel te maken zonder dat een kostbare onderwaterbetonvloer met trekankers nodig is. De klei die daar vanaf circa twintig tot dertig meter diepte in de ondergrond zit, is namelijk heel stevig en vrijwel waterondoorlatend.”

(Beeld: Beheersmaatschappij Antwerpen Mobiel / RoTS)

Aanpak

Kaalberg vervolgt: “Om zo’n tunnel onder de havens te kunnen bouwen, moet eerst een tijdelijke kistdam worden gemaakt. Daarvoor worden vanaf pontons damwanden tot een diepte van circa 25 tot 30 meter aangebracht, net in de Boomse Klei. Vervolgens wordt de ruimte tussen de damwanden opgevuld met zand. Daarna moet als het ware worden gespeeld met de grondwaterstand in de kistdam om de damwanden goed te ‘trimmen’. Als dat is gebeurd, kunnen de diepwanden worden gemaakt. Ze worden 1,2 meter dik en komen tot een diepte van ongeveer 43 meter. Ze staan dus voor een groot deel in de Boomse Klei.”

Fasering Amerikadok, klik op de afbeelding voor een grotere versie. (Tekeningen: RoTS)

“Na de buitenwanden worden de wanden van het middenkanaal van de tunnel gemaakt. Deze worden alternerend als diepwand uitgevoerd: dan weer wordt over een bepaalde lengte de linkerwand gemaakt, en dan weer alleen de rechter. Later worden de ontbrekende delen van de middenwanden met blokken gipsbeton gebouwd. Dat is niet alleen aanmerkelijk goedkoper, maar zorgt er ook voor dat de explosiebestendigheid van de tunnel toeneemt. Bij een eventuele explosie bezwijken de gipsbetonwanden vrij eenvoudig, wat zorgt voor een volumetoename en daarmee voor een explosiedrukvermindering.”

“Aangezien het tunneldak op een diepte van ongeveer acht meter onder de waterspiegel van het Albertkanaal komt, worden de diepwandsleuven niet helemaal tot bovenaan volgestort met beton. De bovenste acht meter, waar geen wapening zit, wordt gevuld met los materiaal dat later weer eenvoudig te verwijderen is. Als alle diepwanden gereed zijn, wordt een deel van het zand weggegraven, het grondwater weggepompt en worden tijdelijke stempels geplaatst. Vervolgens worden van boven naar beneden het dak en de vloeren gemaakt. Aantrekkelijk daarbij is dat het dak direct op het harde zand kan worden gestort.”

Kaalberg vervolgt: “Als het dak gereed is, wordt de grond eronder weggegraven, worden weer tijdelijke stempels geplaatst en de eerste vloer gemaakt. Voor de tweede vloer volgen deze stappen nog een keer. Zodra de hele tunnelconstructie klaar is, wordt een laag zand aangebracht op het tunneldak. Daarna worden de damwanden weggehaald en is de onder water liggende cut-and-covertunnel een feit. In grote lijnen gaan we voor het gehele tunneltracé uit van deze werkwijze, maar er zijn nog wel een paar locaties waar het iets gecompliceerder is. Een mooi voorbeeld is de plek waar de tunnel het voormalige Stadsdroogdok kruist.”

Oplossingen

“Ter hoogte van het voormalige Stadsdroogdok ligt op de bodem nog de zes meter dikke betonnen vloerplaat van het droogdok, vrijwel precies op de plek waar de tunnel moet komen. Die constructie moet worden verwijderd. Om dat te kunnen doen, hebben we een aanpak bedacht waarbij een bouwput wordt gemaakt en eerst alleen aan de buitenkant van het dok in een smalle kistdam een diepwand wordt aangebracht. In het huidige ontwerp wordt de andere kant van de bouwput ter plekke van het historische pomphuis met vriestechnieken afgesloten. Dat gebeurt om het gebouw te sparen en de overlast voor het restaurant in het pomphuis te minimaliseren. Als de bouwput dicht is en tijdelijke stempels geplaatst zijn, kan de dikke betonconstructie worden gesloopt. Vervolgens wordt de kuip weer gevuld met zand voor het aanbrengen van de andere diepwanden, waarna de tunnel volgens de ‘normale’ manier ‘onderdaks’ wordt afgebouwd.”

“Iets meer naar het oosten kruist de tunnel de Straatsburgbrug. Daar hebben we een oplossing moeten bedenken om een brugpijler tijdelijk te ondersteunen, zodat hij later op het tunneldak kan komen te staan, boven de middenwand. Voor de kruising met de Noorderlaanbrug – die nog iets oostelijker ligt – hebben we een vergelijkbaar probleem moeten oplossen. Iets voorbij deze brug kruist de tunnel het Albertkanaal waarna hij aansluit op het noordelijke deel van de ringweg. De kruising met het Albertkanaal wordt in twee stappen gebouwd, eerst de ene helft en dan de andere. Op die manier ondervindt de scheepvaart zo min mogelijk hinder.”

Design by testing

Aan het vernieuwende ontwerp van RoTS is veel denk- en rekenwerk voorafgegaan. Volgens Kaalberg was dat echter niet voldoende om tot een goed en uitvoerbaar ontwerp te komen: “Met vakmanschap, creativiteit en digitale rekentools kun je een heel eind komen, maar er zijn altijd onderdelen op het raakvlak van geotechniek en constructies die lastig zijn te kwantificeren. We weten bijvoorbeeld niet zeker hoe groot de invloed is van de zwel van de Boomse klei op constructies. Je kunt dan twee dingen doen: extra maatregelen treffen om de risico’s voldoende af te dekken of een proef doen om te zien hoe het in de praktijk uitvalt. Ik ben groot voorstander van de tweede optie, ook wel ‘design by testing’ genoemd. Door proeven te doen, weet je zeker of je aanpak straks werkt en voorkom je dat er onnodige kosten worden gemaakt. Aangezien er op grote delen van dit tunneltracé onzekerheden spelen, is besloten om hier, net als bij de Noord/Zuidlijn, van deze ontwerpfilosofie uit te gaan.”

“In een verloren hoekje naast de bestaande ringweg hebben we bijvoorbeeld getest of het lukt om damwanden aan te brengen tot een diepte van 27 meter. Op een groot deel van het tracé bestaat de ondergrond namelijk uit glauconiethoudend zand, en het is bekend dat dit zand soms tot problemen leidt tijdens het heien. Bij de proef deden deze problemen zich inderdaad voor, maar met enige aanpassingen kregen we de damwanden toch op diepte.”

Een andere proef moet duidelijk maken hoe de Boomse Klei zich rondom de diepwanden en onder de onderste tunnelvloer gedraagt tijdens de bouw en als de tunnel gereed is. Kaalberg: “Naast het zwelonderzoek gaan we met deze proef na of de wanden echt tot een diepte van 37 meter moeten worden gemaakt of misschien minder lang kunnen. Om beide aspecten te onderzoeken, hebben we een proefbouwkuip gemaakt met damwanden – met diepwanden zou het te duur worden – waarbij we eerst een stuk grond hebben afgegraven om op de gewenste diepte te komen. Met onder andere waterspannings- en extensometers volgen we nu het gedrag van de klei tijdens de ontgraving. De proefput is eind oktober op diepte en dan weten we meer.”

Onderwaterbumper

“Een onderdeel dat we nog verder moeten uitzoeken betreft de aanvaarbeveiliging. In het Amerikadok moeten grote zeeschepen een bocht maken. Als een schip daarbij uit koers raakt – wat een paar jaar geleden nog is gebeurd – kan het de tunnelconstructie beschadigen. Om dat te voorkomen, gaan we uit van een forse onderwaterberm. Toen uit simulaties bleek dat dit niet voldoende is, hebben we ook nog een onderwaterbumper ontworpen, een soort vangrail die bestaat uit twee rijen damwanden met daartussen onderwaterbeton en horizontale damwandplanken als extra versterking. Het havenbedrijf is hiermee nog niet akkoord gegaan, omdat ze vrezen dat deze bumper bij een eventuele aanvaring te veel schade aan de schepen veroorzaakt. Hier moeten dus nog ontwerpmodificaties worden doorgevoerd.”

Kostenreductie

Een belangrijk opgave voor RoTs was het vinden van besparingen. De tunnel mag namelijk niet duurder worden dan de eerder geplande tuibrug. Volgens Kaalberg is dat gelukt: “Uiteindelijk hebben we een kostenreductie van ruim 450 miljoen euro gerealiseerd. Door de tunnel te stapelen kunnen we bijvoorbeeld één vloer weglaten. Op een totale lengte van bijna twee kilometer scheelt dat enorm. Een andere grote besparing realiseren we doordat we het aantal benodigde kunstwerken bij de Oosterweelknoop hebben teruggebracht van veertien naar zes. Dat is mogelijk doordat de tunnelbuizen in ons ontwerp boven elkaar liggen en niet naast elkaar zoals bij de oorspronkelijke afzinktunnel. Daardoor zijn minder ingewikkelde vlechtpatronen nodig. Verder leidt ons ontwerp tot veel minder hinder voor de scheepvaart. Er hoeven bijvoorbeeld geen afzinksleuven te worden gebaggerd en er ontstaan ook geen stremmingen door de aanvoer van grote tunnelelementen.

Velsen, Renovatie Velsertunnel

De Velsertunnel is de oudste snelwegtunnel van Nederland. Hij loopt onder het Noordzeekanaal tussen IJmuiden en Beverwijk en ging in 1957 open voor het verkeer. Bijna zestig jaar na de opening was de bijna 800 meter lange tunnel toe aan groot onderhoud. Op 16 januari 2017 ging de tunnel na een renovatie van negen maanden weer open voor het verkeer.

De Velsertunnel is flink opgeknapt. Dat is belangrijk, want de tunnel is een belangrijke schakel in het Noord-Hollandse wegennet. Per dag rijden er ongeveer 65.000 voertuigen doorheen. Door de renovatie voldoet de tunnel aan de nieuwe Tunnelwet en kan het verkeer ook in de toekomst vlot en veilig door de tunnel rijden.

De Velsertunnel is de oudste snelwegtunnel van Nederland. (Foto: Flickr/free photos)

De Velsertunnel was anno 2015 de enige bestaande rijkstunnel die niet voldeed aan de veiligheidsnorm, zoals die in de Wet aanvullende regels veiligheid wegtunnels is vastgelegd. Diverse tunneltechnische installaties waren verouderd, waaronder het ventilatiesysteem en het blussysteem. Verder waren er ieder jaar incidenten met te hoge vrachtwagens die vast komen te zitten in de tunnel. Deze incidenten leidden tot schade aan de tunnel en veroorzaakten verkeersoverlast.

Renovatie

Bij de renovatie zijn de tunnelbuizen met twaalf centimeter verhoogd en is een nieuw ventilatiesysteem aangebracht. Bij brand in de tunnel wordt rook niet langer via de ventilatietorens naar boven afgezogen, maar door ventilatoren in de rijrichting de tunnel uitgeblazen. Verder zijn de tunneltechnische installaties vernieuwd en aangesloten op een verkeerscentrale. Ook zijn de vluchtwegen aangepast, liggen de vluchtdeuren minder ver uit elkaar, is alle betonschade gerepareerd en is het wegdek vernieuwd. De ventilatietorens voorzien nu vijf vluchtruimtes onderin de tunnel van frisse lucht.

De renovatie is aanbesteed als een ‘Design, Construct & Maintenance’-contract. Na oplevering is de opdrachtnemer, het consortium Hyacint, nog zeven jaar verantwoordelijk voor het tunnelonderhoud.

Na de voorlopige gunning in februari 2014 hield Hyacint direct scrumsessies met opdrachtgever Rijkswaterstaat. Doel van deze aanpak, die nieuw was in de civiele wereld, was het verhelderen van de contracteisen en het krijgen van overeenstemming. De voorbereidende werkzaamheden voor de renovatie zijn eind 2015 gestart. Tijdens de renovatie zelf, die in het voorjaar van 2016 begon, was de tunnel negen maanden dicht voor al het verkeer om ervoor te zorgen dat de werkzaamheden veilig konden worden uitgevoerd. Om verkeershinder te beperken en de bereikbaarheid van de regio op peil te houden, had Rijkswaterstaat allerlei maatregelen getroffen, zoals het aanleggen van omleidingsroutes en tijdelijke verbindingswegen en het uitvoeren van mobiliteitsplannen.

Toen de Velsertunnel dicht was, werd het verkeer omgeleid door de Wijkertunnel. Voor verkeer van zuid naar noord had Rijkswaterstaat vier tijdelijke verbindingswegen aangelegd: de zogeheten keerlussen.

Historie

De Velsertunnel is gebouwd volgens de openbouwputmethode Hiervoor is gekozen vanwege een kleilaag in de ondergrond op 16 meter beneden NAP. Door deze kleilaag kon geen gebruik worden gemaakt van de afzinktechniek, omdat de afzinksleuf de kleilaag zou doorsnijden. Dat zou ertoe leiden dat zout water zich zou vermengen met het zoete grondwater.

De bouwput is toentertijd in fases aangelegd. Eerst is een bouwkuip gemaakt vanaf de zuidoever van het Noordzeekanaal. Deze bouwput was 300 meter lang. Hierna is er in het midden van het kanaal een eiland gemaakt, waarna de noordzijde van het kanaal is afgesloten met damwanden. Nadat deze bouwput is uitgegraven, is het noordelijke deel van de tunnel gebouwd en zijn beide delen op elkaar aangesloten.

Voor de ventilatie van de tunnelbuizen zijn zowel aan de zuid- als noordkant ventilatietorens gebouwd in de vorm van gestileerde hyacinten. De lage torens zijn ruim 16 meter hoog, de hoge ruim 31 meter.

Kiezen en combineren

“Een groeiende bevolking, verdichting van de steden, toenemende automobiliteit, zelfrijdende voertuigen en relatief goedkoper wordende ontwikkelkosten voor ondergrondse ruimten: de ondergrond wordt steeds belangrijker. Met lef en creativiteit halen we de waarde naar boven.

We reizen meer en meer door weg- en/of spoortunnels, via ondergrondse railstations. We parkeren auto’s en fietsen in parkeergarages ver onder het maaiveld. En, net als boven de grond, willen we ons ook ondergronds prettig voelen in een fysiek en sociaal veilige, comfortabele omgeving. Een omgeving waarin we geen hinder ondervinden en die vierentwintig uur per dag beschikbaar is.

Soms lijken thema’s als veiligheid en duurzaamheid elkaar te bijten, zoals bij rijkstunnels op het moment aan de hand lijkt te zijn: tegen de doelstellingen in stijgt het elektriciteitsverbruik. Toch is een veilige én duurzame, energiezuinige omgeving zeker mogelijk. In andere marktsectoren hebben we daarvoor met elkaar oplossingen gevonden. Het vergt anders denken en vooral keuzes durven maken. De status quo aan de kaak stellen. Als relatieve nieuwkomer in de markt voor ondergronds bouwen kunnen en willen wij daaraan bijdragen. Onder andere via het COB, waar we in eerste instantie actief zijn in de werkgroep Energiereductie tunnels en het KIBO-kennisproject: thema’s waar Deerns veel affiniteit mee heeft.

Deerns werkt al jaren samen met partners aan projecten waarin veiligheid, betrouwbaarheid, continuïteit en duurzaamheid een grote rol spelen. Door brede kennis in installatietechniek en expertise op het gebied van bouwfysica, veiligheid, beveiliging en communicatienetwerken zijn we een voorloper in de markt. Zowel op gebouw- als gebiedsniveau werken wij wereldwijd aan duurzame oplossingen. Bijvoorbeeld door het creëren van Smart Utility Networks, waarbij de mogelijkheden, maar ook beperkingen van de ondergrond een belangrijke rol spelen. Een groot compliment dat we ooit van een opdrachtgever kregen, is dat hij ons graag wilde betrekken bij een nieuw project, omdat hij van ons had geleerd dat je de toepassing van installaties moet zien te beperken als er andere oplossingen mogelijk zijn. ”

Erik Lousberg is algemeen directeur bij Deerns. Ook is hij lid van de raad van toezicht van ISSO, kennisinstituut voor de installatiesector.

(Foto: Vincent Basler)

Zwemmen in een schuilkelder

De Finse hoofdstad Helsinki beschikt sinds 2010 over een integraal ondergronds masterplan. Het plan brengt de bestaande ondergrondse toepassingen in kaart en voorziet in reserveringen voor toekomstig gebruik. Volgens Ilkka Vähäaho, hoofd van de geotechnische divisie van Helsinki en voorzitter van de Finse tunnelassociatie, is het plan een onmisbaar hulpmiddel voor duurzame ontwikkeling van de stad en zijn ondergrond.

Vähäaho: “Het masterplan voor de ondergrond is bijvoorbeeld het fundament voor de bijdrage van de ondergrond aan een duurzaam en esthetisch acceptabel landschap en behoud van ontwikkelmogelijkheden voor toekomstige generaties. Zo speelt het masterplan een belangrijke rol in de ruimtelijke ordening.”

Het ondergrondse masterplan voor Helsinki brengt zowel de bestaande als toekomstige ondergrondse ruimten, tunnels en vitale ondergrondse onderlinge verbindingen in kaart. In het plan zijn reserveringen opgenomen voor nu nog onbekende toekomstige ondergrondse toepassingen. Op basis van uitgebreid geologisch onderzoek is bepaald welke plekken in de ondergrond geschikt zijn. Daarbij is vooral gekeken welke nog niet benutte ondergrondse capaciteit in de toekomst een bijdrage kan leveren aan het verminderen van de druk op het stadscentrum. Anders dan in Nederland, waar de meeste ondergrondse bouwwerken ‘stand-alone’ zijn, ontwikkelt de ondergrond van Helsinki zich door het verbinden van bestaande en nieuwe ondergrondse toepassingen steeds meer tot een aaneengesloten ondergrondse stad.

De integrale aanpak biedt extra voordelen boven op die van het sec ondergronds gaan. Er is sprake van multifunctioneel ondergronds ruimtegebruik, zoals bij het ondergrondse zwembad in Itäkeskus, dat in tijden van nood kan worden omgevormd tot schuilkelder. Een datacenter onder een kathedraal wordt via een ondergronds buizenstelsel gekoeld met zeewater. De restwarmte gaat – ook weer ondergronds – naar de stadsverwarming.

Er zijn grote voordelen verbonden aan multifunctionele leidingentunnels. Ilkka Vähäaho geeft aan dat het masterplan ook een bijdrage levert aan een betrouwbare energievoorziening en optimalisatie van energie-opwekking. Kosten kunnen worden gedeeld door meerdere gebruikers. Bovengronds ontstaat ruimte voor nieuwe initiatieven, en het uiterlijk en imago van de stad worden verbeterd. Onderhoud is eenvoudiger en goedkoper en de impact van werkzaamheden aan ondergrondse leidingen op het dagelijks leven bovengronds is beperkt. Bovengronds komt ruimte vrij voor andere doeleinden.

Lange historie

Helsinki heeft een lange historie van ondergronds bouwen. De stad kent nu al meer dan vierhonderd ondergrondse bouwwerken, zestig kilometer tunnels voor technisch onderhoud en tweehonderd kilometer multifunctionele leidingentunnels voor verwarming, koeling, elektriciteit en water. De watervoorziening van de stad is gegarandeerd door middel van een honderd kilometer lange ondergrondse tunnel die in de periode 1972-1982 werd gerealiseerd tussen Lake Päijanne en Helsinki.

Naast voor de hand liggende toepassingen als tunnels, parkeergarages en multifunctionele leidingentunnels voor onder andere stadsverwarming kent Helsinki ook tal van andere toepassingen, zoals muziekcentrum en een zwembad. Ook het bedrijfsleven gaat ondergronds, onder andere met opslag of het eerder genoemde ondergrondse datacenter.

In het masterplan is rekening gehouden met tweehonderd reserveringen voor ondergronds gebruik en nog eens veertig reserveringen zonder vooraf bepaalde bestemming. De gemiddelde oppervlakte van die reservering is dertig hectare, optellend tot een totaal van veertien honderd hectare, ofwel 6,4% van de oppervlakte van Helsinki. In 2011 werd berekend dat er voor elke honderd vierkante meter bovengrondse ruimte een vierkante meter ondergrondse ruimte werd benut. De huidige reserveringen vertegenwoordigen dus nog een enorm ondergronds potentieel.

Bovengrondse kwaliteit

Uitgangspunt is dat wat niet bovengronds hoeft, net zo goed ondergronds kan. Burgemeester Jussi Pajunen daarover in een documentaire van CNN: “Functies die niet gezien hoeven te worden, stoppen we onder de grond. Het is relatief goedkoop, dus waarom zou je er geen gebruik van maken.” De kwaliteit van de bovengrondse ruimte blijkt in veel gevallen de belangrijkste drijfveer. Ilkka Vähäaho: “Niet-Finse deskundigen beweren wel dat de gunstige eigenschappen van het bedrockgesteente en de zeer strenge winterklimatologische omstandigheden de belangrijkste drijfveren voor deze ontwikkeling zijn geweest. Maar er zijn belangrijker argumenten. Finnen hebben een sterke behoefte aan open ruimten, zelfs in de stadscentra, en Helsinki is klein. Het is qua inwoners de grootste stad van Finland, maar behoort qua oppervlakte tot de kleinste.”

Zero-land-use-thinking

Helsinki kent al sinds de jaren tachtig van de vorige eeuw een toewijzingsbeleid voor ondergronds ruimtegebruik. Begin deze eeuw ontstond het idee voor een integraal ondergronds masterplan. De eerste voorbereidingen startten in 2004. De gemeenteraad van Helsinki keurde het masterplan in december 2010 goed. Ilkka Vähäaho noemt het een voorbeeld van ‘zero-land-use-thinking’. Met andere woorden, het uitgangspunt dat nieuwe functies in de stad niet tot extra bovengronds ruimtebeslag mogen leiden.

Hij illustreert dat met een doorsnede van het Katri Vala Park (zie figuur hiernaast). Daar werden sinds de jaren vijftig ondergronds achtereenvolgens opslagruimten, een multifunctionele leidingentunnel, een tunnel voor gezuiverd afvalwater en een warmtepompstation gerealiseerd. In het masterplan is onder dezelfde locatie ook nog ruimte gereserveerd voor toekomstig ondergronds gebruik. Het park is in al die tijd onaangetast gebleven.

 

 

Geotechniek voor Ondergrondse Ruimteontwikkeling

Voor het in kaart brengen van geschikte locaties voor toekomstig ondergronds gebruik heeft de geotechnische dienst van Ilkka Vähäaho uitgebreid onderzoek gedaan. Er is onderzoek gedaan naar locaties waar de mogelijk grote aaneengesloten ruimten kunnen worden gerealiseerd. Daarvoor werd een model ontwikkeld op basis van een standaardruimte van 12x50x150 meter (hxbxl). Met behulp van (hoogte)kaarten en boringen zijn de reeds benutte ondergrond en zwakke zones in kaart gebracht.

Het bedrockgesteente ligt in Helsinki niet ver onder het maaiveld. Dat betekent dat er veel goede, veilige locaties zijn voor aanleg van ondergrondse bouwwerken en installaties. Het onderzoek maakte zichtbaar dat er buiten het centrum vijfenvijftig locaties zijn waar in de buurt van verkeersknooppunten redelijk grootschalige ondergrondse voorzieningen gerealiseerd kunnen worden. Deze plekken zijn gemarkeerd als mogelijke toekomstige toegangen tot ondergrondse bouwwerken en infrastructuur.

Ambities
In Finland wordt ook buiten de hoofdstad gekeken naar de mogelijkheden die de ondergrond biedt. Ilkka Vähäaho noemt de steden Tampere, de derde stad van het land, en Oulu als voorbeelden. En er wordt serieus gekeken naar de haalbaarheid van een tachtig kilometer lange onderzeese tunnel tussen Helsinki en de Estse hoofdstad Tallinn, die dan samen zouden moeten uitgroeien tot de tweelingstad ‘Talsinki’, met de potentie om te gaan concurreren met steden als Stockholm en Kopenhagen.

Veilige tunnel door snelle branddetectie

Tunnelbranden kunnen catastrofaal zijn in relatie tot mensenlevens en de tunnel zelf. Tijdige en accurate branddetectie is een elementaire voorwaarde om branden te kunnen beperken en te bestrijden. Marina Fragkopoulou, masterstudent aan de TU Delft en onderzoekstagiaire bij Deerns, onderzoekt de werking van state-of-the-artbrandmeldsystemen.

Door de toenemende stedelijke ontwikkeling en bevolkingsgroei, wordt verwacht dat de komende twintig tot dertig jaar snelwegen en andere infrastructuur een kritisch breekpunt bereiken ten aanzien van hun capaciteit. Dit resulteert in veel tunnelbouwprojecten in de komende tien tot vijftien jaar. Momenteel kent Europa al meer dan 15.000 kilometer aan operationele tunnels voor transport. Hoewel ongelukken door tunnelbranden minder vaak voorkomen dan ongevallen op open wegen, kan hun effect significant ernstiger zijn. Dit heeft te maken met de kritische basisfactoren van een tunnel:

  • Gesloten omgeving
  • Beperkte vluchtrichtingen
  • Noodzaak tot zelfredzaamheid
  • Menselijke factor

De menselijke factor is zeer moeilijk voorspelbaar. Om de zelfredzaamheid te verbeteren en mensen meer vluchttijd te geven, is het noodzakelijk branden vroegtijdig te detecteren.

Door een toenemende bewustzijn van de risico’s bij tunnelbranden, zijn er nieuwe veiligheidsmaatregelen en regelgevingen geïntroduceerd op nationaal en internationaal niveau. Veel Europese landen worden geconfronteerd met de verplichting tunnels te renoveren waar deze als ‘onveilig’ worden bestempeld. Renovatie kan voor stakeholders echter ongewenst en te kostbaar zijn. De studie van Marina richt zich daarom op alternatieve oplossingen om het gewenste veiligheidsniveau te bereiken.

Doel van het onderzoek

Initieel onderzoek wijst uit dat vroegtijdige branddetectie een van de meest belangrijke aspecten is van brandveiligheid in tunnels. Het doel van de studie is te verifiëren of meer geavanceerde technieken die een snelle reactietijd hebben een compromis kunnen zijn voor de huidige veiligheidseisen in de standaarden. Marina onderzoekt het effect van een technologisch geavanceerd systeem op de detectietijd en daarmee op het totale evacuatieproces.

Er worden drie type detectiesystemen onderzocht:

  • Lineaire hittedetectie (LHD): een continue hittedetectiekabel die over de volledige lengte van de tunnel hitte detecteert.
  • Meervoudige gasdetectie (MGD): sensoren die brandgerelateerde gassen detecteren in een vroege fase van de brandontwikkeling.
  • Gesloten-circuit camerasysteem (CCTV): de omgeving met camera’s in de gaten houden om brand te detecteren.

Marina heeft brandsimulatiesoftware (fire dynamics simulator, FDS) gebruikt om diverse scenario’s met branden te simuleren en de werking van elk branddetectiesysteem te onderzoeken. De FSD bevat standaard geen opties voor het modelleren van nieuwere warmte- en rookdetectiesystemen. De LHD moest bijvoorbeeld gemodelleerd worden als een rij met losse detectoren. Via leveranciers kon Marina de juiste parameters achterhalen, zoals de alarmdrempels. Met praktijktestresultaten heeft ze de modellen kunnen valideren.

De detectiesystemen worden getest op drie type brandhaarden. De omvang van de brand (heat release rate, in megawatt) volgt uit praktijkproeven:

  • Passagiersauto – 10MW
  • Bus – 30MW
  • Zwaar transportvoertuig -200MW

Simulaties van twee scenario’s: de rookontwikkeling bij een brandende auto (boven) en een brandende zware goederenvrachtwagen. (Beelden: Marina Fragkopoulou)

De brandhaarden worden gecombineerd met verschillende ventilatiecondities, windcondities en tunnelgeometrie. Dit is bijvoorbeeld van belang om te kunnen bepalen bij welke instellingen de detectoren geen vals alarm geven. In een afgesloten ruimte zoals een tunnel kunnen warmte en gassen van voertuigen al snel leiden tot hoge temperaturen en hoge concentraties van giftige stoffen, waardoor het alarm onterecht zou kunnen afgaan. De rol van het ventilatiesysteem is dan ook belangrijk om mee te nemen.

Resultaten

Testen met de branddetectoren hebben reeds interessante resultaten opgeleverd aangaande de reactie onder bepaalde condities. Zo lijken het type ventilatiesysteem en de luchtstroming inderdaad van grote invloed te zijn. Een sterke luchtstroming in de lengterichting van de tunnel heeft veel effect op warmtedetectoren die geactiveerd worden op basis van temperatuurstijging of een absolute temperatuurdrempel. Bovendien wijzen de resultaten erop dat de prestatie van een detector sterk afhangt van het brandscenario. Bij een autobrand lijkt detectie bijvoorbeeld minder effectief omdat de temperatuur langzaam stijgt, waardoor het systeem soms niet binnen drie minuten reageert: de reactiesnelheid die minimaal noodzakelijk is om het gewenste veiligheidsniveau te bereiken. Aan de andere kant is MGD bij dit scenario juist wel effectief. Hiermee kan brand vaak al binnen twee minuten gedetecteerd worden.

Het onderzoek leidt tot een gevalideerd model dat diepgaand inzicht geeft in de werking en prestaties van detectiesystemen onder invloed van externe factoren. De opzet van de studie maakt het mogelijk om meer brandscenario’s en nieuwe detectietechnologieën te onderzoeken met gevalideerde simulaties. Tunnelontwerpers kunnen op basis hiervan prestatiegerichte keuzes maken ten aanzien van de veiligheid, zoals voor het branddetectiesysteem, de interactie tussen de detectoren en het ventilatiesysteem, de verwachtte reactietijd en de impact op het evacuatieproces. Zo wordt duidelijk welke inrichting best passend is bij een brandscenario.

Lokale tunnel bediend vanuit verkeerscentrale Rijkswaterstaat

Pal naast de A2 Leidsche Rijntunnel ligt de Utrechtse Stadsbaantunnel. Deze gemeentelijke tunnel voor lokaal verkeer werd het eerste jaar na opening lokaal bediend. Inmiddels is de tunnel aangesloten op de verkeerscentrale Midden-Nederland van Rijkswaterstaat. De omzetting was een uitdagend project.

“In 2013 raakte ik bij het project Stadsbaantunnel betrokken”, vertelt Sieb van der Weide, gemandateerd tunnelbeheerder en coördinator ondergrondse infrastructuur van de gemeente Utrecht. “De tunnel was toen al in aanbouw. Het ontwerp voorzag erin dat de tunnel vanuit het lokale bediengebouw boven de zuidelijke tunnelmond door gemeentelijk personeel bediend zou worden. Ik plaatste vraagtekens bij deze keuze, omdat het mij logischer leek de bediening bij de verkeerscentrale van Rijkswaterstaat onder te brengen die al de aangrenzende A2 Leidsche Rijntunnel bediende. Bovendien hadden we als gemeente geen ervaring met tunnels onder Warvw-regime. De Stadsbaantunnel is onze eerste tunnel en naar verwachting komen er de komende jaren ook geen nieuwe tunnels bij.”

“Er bleek eerder ook al over de optie van externe bediening te zijn nagedacht. Zo had het gemeentelijke Bureau Negen Tien – dat verantwoordelijk was voor alle ruimtelijke opgaven in de wijken Leidsche Rijn en Vleuten-De Meern, de wijken negen en tien, en dus ook voor de bouw van de tunnel – geprobeerd om de bediening via Rijkswaterstaat te organiseren. Ook had het lijntjes uitgezet naar de gemeenten Den Haag en Amsterdam en de verkeerscentrale van de Waterwolftunnel. Allemaal zonder het gewenste resultaat. Toen ik het onderwerp eind 2013 op de agenda zette, werd mijn idee positief ontvangen. Aanpassing van het ontwerp tijdens de bouw werd echter door de bouwer en Bureau Negen Tien als ongewenst bestempeld. Dat leidde tot het compromis om de tunnel conform het ontwerp te bouwen en vervolgens, na de opening, te kijken hoe hij op de verkeerscentrale Midden-Nederland van Rijkswaterstaat kon worden aangesloten. Verder werd besloten om de tunnel al direct vanaf de opening door medewerkers van Rijkswaterstaat te laten bedienen vanuit het lokale bediengebouw. In mei 2015 sloten de gemeente Utrecht en Rijkswaterstaat daartoe een convenant waarin deze punten en de samenwerking rond de bediening en bewaking van de tunnel werden vastgelegd.”

Verkenning

“Natuurlijk was dit geen optimale start”, zegt Jasper Kimstra, die met zijn bedrijf Kimpro namens de gemeente Utrecht en Rijkswaterstaat verantwoordelijk was voor het projectmanagement van het technische deel van de omzetting. “Het ontwerp van de tunnel was volledig gericht op lokale bediening en niet op aansluiting op de verkeerscentrale van Rijkswaterstaat. Daardoor moesten we twee complexe technische systemen koppelen die niet op elkaar waren afgestemd. Gelukkig was de gemeente bij het ontwerp wel grotendeels uitgegaan van de Landelijke Tunnelstandaard, waardoor toch tal van onderdelen aansloten op de ontwerpsystematiek van Rijkswaterstaat.”

Links de ‘pergola’ van de zuidelijke ingang van de Stadsbaantunnel met het lokale bediengebouw, rechts het noordelijke bediengebouw van de A2-tunnel. (Foto: Xxx)

“Nadat het convenant was gesloten, is vrij snel een projectteam opgetuigd”, vult Reinier van der Klooster van Rijkswaterstaat Centrale Informatievoorziening aan. Door Rijkswaterstaat Midden-Nederland was Van der Klooster gevraagd als projectmanager mee te werken aan het project. “We zijn begonnen met een verkenning: welke onderdelen zijn al goed en welke technische en organisatorische maatregelen zijn nodig om de tunnel goed te kunnen bedienen? Vervolgens hebben we een functioneel ontwerp gemaakt. Wat hebben we nodig in de centrale als we ervan uitgaan dat zowel de Stadsbaantunnel als de Leidsche Rijntunnel vanaf elk van de acht werkplekken in de verkeerscentrale moet kunnen worden bediend? Hoeveel beeldschermen hebben we dan bijvoorbeeld nodig en hoeveel audiokanalen?”

Aanpassen netwerk

Kimstra: “Bij het vaststellen van de noodzakelijke technische aanpassingen hebben we de technische aansluitvoorwaarden van de verkeerscentrale – het zogeheten universeel koppelvlak verkeerscentrale – de bedieningssystematiek van Rijkswaterstaat en de bijbehorende set van systemen als uitgangspunt genomen. Denk aan de indeling van videoschermen en de manier waarop het bedieningssysteem werkt. We vinden het namelijk belangrijk dat de verkeersleiders in de centrale zowel de Leidsche Rijntunnel als de Stadsbaantunnel intuïtief kunnen bedienen. Tegelijkertijd moeten de verkeersleiders ook in het lokale bediengebouw uit de voeten kunnen, omdat dat als terugvaloptie dient als de centrale uitvalt. Om die reden hebben we daar bijvoorbeeld een aantal joysticks vervangen die net iets anders werkten dan die in de centrale. Verder hebben we in de centrale een aantal werkplekken aangepast omdat die de HD-kwaliteit van de camerabeelden uit de Stadsbaantunnel niet snel genoeg konden verwerken.”

Volgens Kimstra was de grootste en meest ingrijpende maatregel het aanpassen van het netwerk in de tunnel: “We moesten het datanetwerk passend maken op het netwerk van Rijkswaterstaat. Concreet betekende dit dat we alles moesten omnummeren en andere IP-adressen moesten geven. Uiteindelijk ging het om meer dan driehonderd installatieonderdelen. Dat was veel werk en vergde veel controles. Zo bleven we op een gegeven moment foutmeldingen krijgen. Na lang zoeken bleek de firewall dit probleem te veroorzaken.”

“We bleven op een gegeven moment foutmeldingen krijgen. Na lang zoeken bleek de firewall dit probleem te veroorzaken.”

Van der Klooster: “Dit soort voorbeelden laat mooi het verschil zien tussen ICT en een vakgebied als civiele techniek. Als de betondekking in een tunnel ergens een centimeter meer of minder is, is dat meestal niet direct een probleem. In ons vakgebied gaat het om eentjes en nulletjes en als ergens een nulletje wordt doorgegeven terwijl het een eentje moet zijn, gaan direct alle alarmbellen rinkelen.”

‘Pak van mijn hart’

Op 15 december 2016, vrijwel exact een jaar na de opening van de Stadsbaantunnel, was de centrale bediening een feit. Terugkijkend op het project is Van der Weide zeer tevreden: “Door de omzetting hebben we een forse efficiencyverbetering gerealiseerd. De ploeg voor de lokale bediening bestond uit vijftien mensen, terwijl met het onderbrengen van de bediening bij de verkeerscentrale Midden-Nederland daar slechts 2,3 formatieplaatsen voor nodig zijn. De verkeersleiders kunnen de bediening van de Stadsbaantunnel namelijk vrij eenvoudig meenemen bij hun andere werkzaamheden. Een ander belangrijk pluspunt is dat de hulpdiensten blij zijn met de gecombineerde bediening van de Stadsbaantunnel en de Leidsche Rijntunnel, omdat deze de veiligheid van beide tunnels vergroot. Ze vinden het prettig om bij calamiteiten in een van de tunnels vanuit dezelfde centrale te worden aangestuurd en maken bij een calamiteit in de Leidsche Rijntunnel graag gebruik van de calamiteitendoorsteek van de Stadsbaantunnel.”

Ook Kimstra en Van der Klooster kijken met een positief gevoel terug. Van der Klooster noemt de constructieve manier waarop de gemeente en Rijkswaterstaat hebben samengewerkt en Kimstra prijst de manier waarop alle leveranciers in een situatie met verschillende opdrachtgevers hun werk gezamenlijk hebben gedaan. Maar Van der Klooster heeft ’m ook nog wel even geknepen. Hij doelt daarbij op het laatste deel van het project, het testtraject: “Op 4 december hebben we de lokale bediening buiten werking gesteld en de tunnel tijdelijk gesloten. Vervolgens hadden we tien dagen om de nieuwe lokale én centrale bediening op te bouwen en te testen. Dat was heel krap, en achteraf vraag ik me af of we ons niet te veel onder druk hebben laten zetten met de planning.” Ook Van der Weide vond deze periode erg spannend: “Toen het bericht kwam dat de tunnel weer open was en het ook ‘deed’, was dat een pak van mijn hart.”

Amsterdam, Eerste Coentunnel

De Eerste Coentunnel is meer dan veertig jaar oud. (Foto: Kees Stuip Fotografie)

In mei 2013 ging de Tweede Coentunnel open voor het verkeer. Dat was het moment waarop de renovatie begon van de pal ernaast gelegen Eerste Coentunnel. Deze afzinktunnel onder het Noordzeekanaal stamt uit 1966 en moet nodig worden gemoderniseerd om weer vijftig jaar op een goede en veilige manier het autoverkeer over de A10 tussen Amsterdam en Zaandam te kunnen verwerken. De tunnelconstructie wordt gerenoveerd en er worden maatregelen genomen om de luchtkwaliteitsbeheersing te verbeteren. Verder krijgt de tunnel alle verkeers- en tunneltechnische installaties die in de Tweede Coentunnel zijn toegepast om te voldoen aan de eisen van de nieuwe tunnelstandaard.

De renovatie wordt in opdracht van Rijkswaterstaat uitgevoerd door het consortium Coentunnel Company en is onderdeel van het DBFM-contract ‘Capaciteitsuitbreiding Coentunnel’ dat loopt tot 2037. De planning is dat de gerenoveerde tunnel medio 2014 in gebruik wordt genomen. Dan biedt deze tunnel drie vaste rijbanen voor het wegverkeer dat in zuidelijke richting rijdt, van Zaandam naar Amsterdam.

Werkzaamheden

Er is gestart met sloopwerkzaamheden. Alle tegels van de wanden zijn verwijderd evenals stukken beton die niet meer voldeden, het wegdek en alle oude kabels, leidingen en installaties. De wanden zijn voorzien van een onderhoudsarme betonnen afwerklaag en deels van brandwerend materiaal om te zorgen dat de tunnel bij een eventuele brand zijn constructieve integriteit behoudt. Ook de plafonds zijn voorzien van (hergebruikt) hittewerend materiaal.

(Foto: Kees Stuip Fotografie)

Voor het verbeteren van de luchtkwaliteitsbeheersing in de tunnel is de open dakconstructie bij de tunnelmonden vervangen door dichte ‘plafonds’. Verder is een schoorsteen van 25 meter hoog gebouwd die de uitlaatgassen uit de tunnel moet afvoeren. Om de plafonds te kunnen maken, moest een aantal betonnen stempels bij de tunnelmonden worden verwijderd. Een tijdelijke stempelconstructie – die de functie van de stempels overnam – zorgde er tijdens de bouwfase voor dat de hoge wanden niet naar binnen werden gedrukt en de tunnel ondertussen toegankelijk bleef voor het werkverkeer.

Door het verwijderen van de betonnen stempels en andere sloopwerkzaamheden nam het gewicht van de tunnelconstructie tijdelijk fors af. Daardoor bestond de kans dat de constructie door het grondwater omhoog zou worden gedrukt. Om dat te voorkomen, zijn stapels stalen rijplaten als extra gewicht op de tunnelvloer gelegd.

De tunnel wordt voorzien van diverse installaties die zorgen voor een vlotte en veilige doorstroming van het verkeer. Daarbij gaat het om camera’s, matrixborden boven de weg, verplaatsbare informatiepanelen en sensoren in het wegdek die registreren of het verkeer rijdt of stilstaat. Verder krijgt de tunnel ventilatoren die bij brand de rook uit de tunnel afvoeren, brandbluspompen die automatisch aangaan en licht- en geluidsignalen die passagiers richting de vluchtwegen leiden. De aansturing van al deze installaties gebeurt met een geavanceerd bedienings- en besturingssysteem.

Aanpak

Vanwege de korte periode waarin de renovatie en het testen van alle installaties moeten zijn afgerond, is het cruciaal dat alle werkzaamheden in één keer goed gaan. Dat vereist een goede engineering en bouwfasering. De Coentunnel Construction, de uitvoerende organisatie onder de Coentunnel Company, heeft hiervoor ingenieursbureau Sophia Engineering ingeschakeld.

Het ontwerpteam heeft bij de engineering al rekening gehouden met alle installaties en kabels en leidingen, zodat de kans op onaangename verrassingen tijdens de uitvoering minimaal is. Verder is er een driedimensionaal model gemaakt, waarin alle werkzaamheden in de tijd zijn gevisualiseerd. Dit model zorgt er niet alleen voor dat de fasering helder is, maar geeft direct inzicht in de complexe aanpassingen van de betonvormen van de schoorsteenconstructie en laat zien welke raakvlakken er zijn tussen de verschillende werkzaamheden

Verkenning virtueel testen

Bij een grootschalige renovatie moet een tunnel vaak volledig worden afgesloten, onder meer om de veiligheid te testen. Het COB-netwerk onderzoekt of de afsluitingsperiode kan worden ingekort door het testen deels virtueel uit te voeren, zodat er al met testen begonnen kan worden voordat de renovatie is afgerond. De eerste stap was een verkenning van de mogelijkheden en randvoorwaarden.

De hinder als gevolg van het afsluiten van een tunnel voor een renovatie bestaat grofweg uit drie fases:

  • Fase 1: De uitvoerings- en installatiewerkzaamheden (inclusief inbedrijfstelling)
  • Fase 2: De testen in de tunnel (SAT, iSAT, SIT, iSIT)
  • Fase 3: Het verkrijgen van de openstellingsvergunning

De hypothese van het COB-project is dat de duur van een volledige tunnelafsluiting behoorlijk verkort kan worden (wat de maatschappelijke kosten reduceert) door fase 2 (deels) parallel te laten lopen met renovatie. Hiertoe zullen testen anders vormgegeven moeten worden, bijvoorbeeld met simulaties en visualisaties. Hierbij geldt dat zeker moet zijn dat het functioneren van de gerenoveerde tunnel (tunneltechnische installaties, TTI) minimaal gelijk blijft aan het huidige niveau.

Als eerste stap wilde het COB-netwerk het volgende verkennen:

  1. De stand der techniek, om een inschatting te maken of (en/of wanneer) een dergelijke aanpak technisch mogelijk is;
  2. De houding van diverse stakeholders tegenover een dergelijke aanpak, om een beeld te krijgen van het draagvlak voor mogelijke oplossingen;
  3. De ontwikkelingen die nodig zijn voordat een dergelijke aanpak tot kortere afsluitingen en minder maatschappelijke kosten leidt;
  4. De wijze waarop benodigde ontwikkelingen versneld en gestimuleerd kunnen worden (bijvoorbeeld via pilotprojecten);
  5. Of en hoe er een connectie is met een nationaal testcentrum.

De verkenning vond plaats via worshops met een aantal belanghebbenden (bevoegde gezagen, Landelijk Tunnelregisseur, veiligheidsbeambte Rijkswaterstaat, etc.) en toeleveranciers (Soltegro, Movares, Covalent, Nspyre, etc.). De bevindingen zijn samengebracht in een position paper.

Workshops

Op 22 mei 2017 is een eerste workshop gehouden met marktpartijen. De deelnemers zijn ervan overtuigd dat virtueel testen technisch gezien mogelijk is. Virtueel testen vergroot wel het belang van de ontwerp- en voorbereidingsfases, omdat er een betrouwbaar virtueel model nodig is (model driven design). Of virtueel testen in de praktijk toegepast zal worden als ‘officiële test’ heeft veel te maken met vertrouwen. Op dit moment eisen zowel de interne stakeholders van Rijkswaterstaat als het bevoegd gezag nog steeds dat bepaalde veiligheidseisen worden aangetoond in de tunnel. Er is dus nog een stap nodig om van een fysieke wereld naar een virtuele ervaring te gaan.

Deelnemers

Klik op het bedrijfslogo voor de deelnemende personen

Altran Netherlands B.V.

Locatie: Utrecht, Herculesplein 24
Ferdinand Cornelissen, rol: Deelnemer
Pim Willemsen, rol: Deelnemer

Besix Nederland bv

Locatie: Dordrecht, Laan van Europa 900
Marie-José Knape, rol: Secretaris

BESIX S.A.

Locatie: Brussel, Avenue des Communautés 100
Jan van Steirteghem, rol: Voorzitter

COB

Locatie: Delft, Van der Burghweg 1
Caro Rietman, rol: Begeleider/Facilitator
Karin de Haas, rol: Coordinator
Leen van Gelder, rol: Coordinator

Covalent

Locatie: Amersfoort, Displayweg 3
Arjan Neef, rol: Deelnemer
Diderick Oerlemans, rol: Deelnemer

Ministerie van IenW DG/RWS

Locatie: Den Haag, Rijnstraat 8
Peter Kole, rol: Deelnemer

Movares

Locatie: Utrecht, Daalseplein 100
Aydemir Cetin, rol: Deelnemer
Jacco Kroese, rol: Deelnemer
Jan Beumer, rol: Deelnemer

Rijkswaterstaat

Locatie: Utrecht, Postbus 2232
Joyce Vreede, rol: Deelnemer

Rijkswaterstaat CIV Centrale Informatievoorziening

Locatie: Delft, Derde Werelddreef 2
Bernhard Thieme, rol: Deelnemer
Reinier van der Klooster, rol: Opdrachtgever

Rijkswaterstaat GPO Grote Projecten en Onderhoud

Locatie: Utrecht, Griffioenlaan 2
Johan Naber, rol: Deelnemer
Sjef van den Buijs, rol: Deelnemer

Rijkswaterstaat PPO Programma's, Projecten en Onderhoud

Locatie: Haarlem, Toekanweg 7
Arno Weiss, rol: Deelnemer

Rijkswaterstaat VWM Verkeer en Watermanagement

Locatie: Velsen-zuid, Amsterdamseweg 25
Dave de Wilde, rol: Deelnemer

Sogeti Nederland B.V.

Locatie: Vianen, Lange Dreef 17
Johan Beikes, rol: Deelnemer
Reinout van Elst, rol: Deelnemer
Tom van de Ven, rol: Deelnemer

Soltegro

Locatie: Capelle Aan Den Ijssel, Rivium Quadrant 159
Alexander van der Kolk, rol: Deelnemer
Franc Fouchier, rol: Deelnemer

Strypes Nederland

Locatie: Leersum, Broekhuizerlaan 3
Erik Holleboom, rol: Deelnemer

Chaos creëren om orde te scheppen

Vaak ontstaan de beste ideeën als er niet voortdurend van bovenaf wordt gestuurd. Diep van binnen weten we dat het loont om controle los te laten, maar toch voelen we de behoefte aan regie, zeker bij complexe vakgebieden als ondergronds bouwen. Is het zinnig om grip te willen hebben op de gecompliceerde werkelijkheid? Merten Hinsenveld (directeur COB) besprak het met Geert Teisman, hoogleraar aan de Erasmus Universiteit Rotterdam en gespecialiseerd in beslissingsprocessen in complexe systemen.

Merten: “Het COB werd in 1995 opgericht met een eenduidige doelstelling: het wegwerken van de achterstand in technische kennis op het gebied van geboorde tunnels. Dat doel is inmiddels gehaald. Het netwerk ontwikkelt zich nu verder en de laatste jaren blijkt er behoefte aan het oppakken van minder heldere en minder technische vraagstukken. Dat zijn vraagstukken waar participanten verschillende visies over hebben en waar een technische ‘best practice’ niet in het verschiet ligt. Ordeningsvraagstukken zijn hier een goed voorbeeld van. Maar ook: hoe kun je een contract zodanig in de markt zetten dat het leidt tot innovatie? Partijen worstelen daarbij met hun behoefte aan controle over het proces en het resultaat. Zo worden tunnelprojecten nu regelmatig met een DBFM-contract in de markt gezet, waarmee wordt aangestuurd op creativiteit, maar zijn er ook standaarden en voorschriften ontwikkeld, waardoor de bouwers weer aan handen en voeten worden gebonden. Hoe komen we uit dit dilemma tussen controle en loslaten?”

Geert: “Daar kom je niet uit; je kunt er alleen verstandig mee om leren gaan. Ook de samenleving als geheel zit in deze spagaat. Enerzijds maakt de toenemende complexiteit het moeilijker om grip te houden, terwijl we daar van nature wel naar verlangen, en anderzijds realiseren we ons dat juist die complexiteit ons verder brengt. In de jaren zestig nam infrastructuur bijvoorbeeld nog een bijna autonome positie in; een autoweg werd gewoon bedacht en gerealiseerd, punt. Gaandeweg werden er ook eisen gesteld vanuit de leefbaarheid, het milieu, de economie, enzovoorts. Er is geen sprake meer van een monofunctioneel ontwerp dat je op basis van een eenduidige definitie van het vraagstuk in een lijnproductie kunt omzetten. We moeten nu eisen uit verschillende domeinen combineren, domeinen die je in de vorige eeuw nog apart van elkaar kon ontwikkelen. Ondergronds bouwen biedt de potentie om de eisen mobiliteit en leefbaarheid te combineren. Rijkswaterstaat merkt hierbij dat vasthouden aan het motto ‘wij betalen, dus wij bepalen’ beperkt succes oplevert. De nieuwe vorm van orde (‘de markt, tenzij’) lijkt echter ook niet te werken. Dat komt doordat ook met deze handelswijze niet de belangrijkste eisen vervuld kunnen worden, namelijk die van gecombineerde kwaliteiten. Die eisen kunnen eigenlijk alleen gerealiseerd worden door co-creatie. Maar co-creatie impliceert dat je vooraf niet precies weet waar je uitkomt. Mensen proberen daar op allerlei manieren aan te ontkomen.”

Merten: “Zie je dat ook bij de grote bouwbedrijven? Ze nemen veiligheidsmensen in dienst, er komt een ICT-afdeling en een installateur; ze halen als het ware de hele keten naar binnen.”

Geert: “Ja, je ziet voortdurend dat mensen het werken in ketens zo vermoeiend vinden dat ze liever alles binnen hun eigen organisatie halen. Alleen haal je daarmee ook de ellende naar binnen, want intern ontstaat er evengoed verkokering. Mijn waarneming is, dat het niet uitmaakt of je de specialisaties extern of intern hebt. Als je in ketens werkt, kies je er expliciet voor dat je tot co-creatieafspraken moet komen met een partij die je niet in de hand hebt, bij intern werken heb je de illusie dat je de ander kunt aansturen.”

Merten: “Je hebt verkokering toch ook nodig, omdat je specialisten wilt die goed zijn in hun werk. Is het niet zo dat je vooral begrip voor de ander moet kweken? Dus niet een civiel ingenieur dwingen om zich ook op het gebied van elektrotechniek te ontwikkelen, maar ervoor zorgen dat er tussen die disciplines wederzijds begrip is?”

Geert: “Ja, je moet nadenken over hoe je de verbinding kunt leggen. Binnen het programma Leven met Water hebben we hiervoor de leertafel ontwikkeld. Gewoon wetenschappers bij elkaar aan tafel zetten, werkt niet: ze praten in hun enthousiasme langs elkaar heen en de kennis blijft naderhand ook niet altijd hangen. De essentie van de leertafel is om vanuit een concreet praktijkvraagstuk een aantal bijeenkomsten te beleggen waar praktijkmensen met wetenschappers in gesprek gaan. De wetenschappers reflecteren vanuit hun specifieke eenzijdige blik op de werkelijkheid. Er ontstaat hierdoor een momentum van gedeelde kennisontwikkeling, want de wetenschappers vinden het leuk om vanuit diverse hoeken kennis toe te voegen en de praktijkmensen kunnen de kennis combineren tot een geheel. Een leertafel is een goede manier om het niveau van gedeelde kennis te verhogen zonder dat je mensen dwingt om zich in ander vakgebied te verdiepen.”

Merten: “En je hebt de praktijkmensen nodig om de kennis te laten landen in de concrete werkelijkheid?”

Geert: “Klopt. Maar het gaat ook om het creëren van chaos, het maken van een onverwachte combinatie van actoren. Dan kunnen er namelijk vernieuwingen plaatsvinden. The Strip, het centrale gebouw van de High Tech Campus Eindhoven, is op dit principe gebaseerd. Het gebouw is puur gericht op informele ontmoetingen van kenniswerkers en praktijkmensen, omdat daaruit onverwachte innovaties voortkomen. Je omarmt chaos als hulpmiddel en je accepteert dat sommige innovaties bij anderen terechtkomen.”

Merten: “Na zo’n leertafel gaat iedereen weer zijn eigen weg. Hoe kun je de kennis vasthouden, zodat je steeds een stap verder komt?”

Geert: “De consolidatie van kennis is een enorme uitdaging. Je hebt eigenlijk mensen nodig die in staat zijn om tijdens een bijeenkomst de kennis op te zuigen en deze de volgende keer kort en bondig terug te geven, zodat de groep direct verder kan. Maar je moet aanvaarden dat je kennis niet kunt vastleggen. Je kunt het wel letterlijk vastleggen, maar dan is het dode kennis, omdat het niet meer in hoofden van mensen zit. Je moet ook aanvaarden dat dat wat je opschrijft, door de lezer heel anders begrepen wordt. Mensen lezen alles vanuit hun eigen frame, wat overigens soms juist innovatie oplevert.”

Merten: “Ligt het ook aan het individu: dat we gewoon veel tijd nodig hebben om ‘cocreatief’ te leren werken? Je hebt tijd nodig om specialist te worden en om interactief te kunnen communiceren. Je houdt bijna geen tijd meer over. Zitten we niet aan de grens van wat menselijk mogelijk is?”

Geert: “Dat zou kunnen, maar er zijn mensen die zeggen dat de nieuwe generatie al meer geschikt is voor co-creatie. Jongeren zijn opgegroeid met netwerken, social media, met ‘interconnectiviteit’. Ze kunnen vaak sneller schakelen en vinden dat ook een onderdeel van hun eigen professionaliteit. Daarmee kun je een enorme slag maken in toenemende complexiteit. Andere zeggen weer dat jongeren te oppervlakkig zijn en dat je meer diepgang nodig hebt. Het blijft dus een open vraag.”

Merten: “Rijkswaterstaat wil ook toe naar co-creatie, maar stelt zich wel op als opdrachtgever. Kort gezegd: de eisen worden functioneel opgesteld en de invulling wordt aan de markt overgelaten. Moeten opdrachtgever en opdrachtnemer voor co-creatie meer als collega’s gaan opereren? Vereist co-creatie dat Rijkswaterstaat zijn rol als opdrachtgever meer loslaat?”

Geert: “Niet per se. Om co-creatie voor je eigen achterban verteerbaar te maken, moet je wel een formele scheiding aanbrengen. Maar vervolgens ga je informele verbindingen aan en binnen dat netwerk vindt co-creatie plaats.”

Merten: “Hoe zorg je er dan voor dat oplossingen die vanuit dat informele netwerk ontstaan niet direct teruggestuurd worden door formele contractmanagers?”

Geert: “De uitdaging zit hem inderdaad in het vormgeven van de overgang tussen de binnen- en buitenwereld. De buitenwereld vraagt om transparantie en zekerheid (‘een besluit is een besluit’), maar je wilt slimme voorstellen vanuit de binnenwereld ook kunnen benutten. Bij het programma Ruimte voor de Rivier hadden ze hiervoor een zogeheten omwisselbesluit: in principe doen we wat we hebben afgesproken, maar als er een beter voorstel komt dat wel de intentie maar niet de letter van het contract volgt, kunnen we een nieuw besluit nemen.”

Merten: “Hoe regel je dit bestuurlijk?”

Geert: “We hebben gemerkt dat degene die het oorspronkelijke besluit heeft genomen niet ontvankelijk is om mee te bewegen naar het nieuwe besluit. Daarom heb je bijvoorbeeld een commissie van ‘wijzen’ nodig, of je kunt burgers laten beoordelen. Zo behoudt de binnenwereld de ruimte om tot vernieuwing te komen, maar houd je tegelijkertijd de transparantie hoog door de externe toets. Ook voor ondergronds bouwen biedt dit kansen. Je moet ondergronds bouwen niet alleen als uitvoeringsmethode zien, maar ook neerzetten als een oplossing waarop burgers trots kunnen zijn; ondergronds bouwen kan van toegevoegde waarde zijn voor hun leefomgeving.”

Dit was de Onderbreking Tunnels en veiligheid

Bekijk een ander koffietafelboek: