Loading...

De Onderbreking

Verbinden

Verbinden

Zuidasdok integraal aangepakt

Harderwijk, Parkeergarage Houtwal

Visie van: Martin van Staveren

Virtual Design and Construction

Onderbreking Verbinden

BIM’men in de bodem

Assen, Drents Museum

DBFM contract tweede coentunnel

Zwemmen in een schuilkelder

Kennisbank

Verbinden

Uit de trends blijkt dat de complexiteit van ondergrondse opgaven alleen maar groeit. Complexiteit vraagt niet alleen om een integrale aanpak en een integraal ontwerp. Adaptief ontwikkelen en ontwerpen zal het uitgangpunt worden, naast het innovatief combineren van vakgebieden. Voor het COB betekent dit dat projecten gericht op het leren samenwerken en het ontwikkelen van ‘zachte vaardigheden’ nog belangrijker worden. Hierbij gaat het vaak om het combineren van sociale intelligentie en technische intelligentie. Zelfs vakgebieden die dicht naast elkaar werken, zoals de mensen van de ondergrond en de ruimtelijke ontwikkelaars, vinden en begrijpen elkaar niet zomaar, en vaak al helemaal niet in een vroeg stadium van gebiedsontwikkeling.

Daarnaast is er de zoektocht naar effectieve manieren om bestaande kennis vast te houden, nieuwe kennis te ontwikkelen en beide bij betrokkenen te laten doorwerken. Ook hier is verbinden het toverwoord: kennis moet ‘stromen’ om ervan te leren en als sector vooruitgang te boeken. Daarbij moet ook naar het buitenland worden gekeken; kennisontwikkeling stopt niet bij de landsgrenzen. Internationaal ervaringen uitwisselen en samenwerken draagt in alle landen bij aan een hoger kennisniveau. Het COB ziet zichzelf als dé partij om deze opgave voor het vakgebied ondergronds bouwen op te pakken en samen met het netwerk uit te werken.

Er ontstaan ook ‘verbindingsopgaven’ door de toenemende invloed van ICT. Niet alleen binnen tunnelveiligheid, maar ook op het gebied van kabels en leidingen moeten verschillende vakgebieden vaker met elkaar samenwerken. Alles heeft intelligentie, alles heeft sensoren; de rol van experts verandert. Gaat open source technologie zijn intrede doen in de sector? Er komt monitoringdata uit diepwanden, kabels en leidingen, tunnelboormachines, gebouwen en de ruimte: wie maakt van data kennis, waar leggen we ervaringen vast? Wat zou er gebeuren als we meer data gaan delen? Zowel op de TU Eindhoven als bij de UvA zijn hoogleraren Big data aangesteld. Welke kansen zien zij voor de wereld van het ondergronds bouwen? Het COB heeft de ambitie om het netwerk uit te breiden met participanten die niet rechtstreeks betrokken zijn bij ondergronds bouwen, maar er wel mee te maken hebben, zoals energiebedrijven. Op die manier kunnen de opgaven effectiever opgepakt worden.

Het verbinden van vakgebieden is een methode om een verbeterslag te maken. Er is veel interessante kennis binnen hele andere vakgebieden: kennis uit de medische wereld kan ons helpen omgaan met de complexiteit van kabels en leidingen, de landbouw is sterk in het snel doorvoeren van innovaties, chemische installaties leren ons hoe je risicomanagement professionaliseert. We denken dat het COB als belangrijke taak heeft om deze kennis en ervaringen te presenteren en ons netwerk te prikkelen er gebruik van te maken. We zijn ervan overtuigd dat ook hier de 80/20-regel geldt: tachtig procent van de kennis is er al (in andere vakgebieden) en wij moeten ons concentreren op de twintig procent unieke kennis die de wereld van het ondergronds bouwen nodig heeft.

Zuidasdok: vier opdrachtgevers, één projectorganisatie

Half maart is het Ontwerp Tracébesluit voor het project Zuidasdok vastgesteld. Het is een nieuwe mijlpaal in de ontwikkeling van de Zuidas en de bereikbaarheid van de noordelijke Randstad. Het Zuidasdok moet leiden tot betere bereikbaarheid en verdere ontwikkeling van de Zuidas tot toplocatie voor zowel werken als wonen en als verblijfsgebied. De bouw start in 2017.

Het Zuidasdok omvat verbreding, het deels ondergronds brengen van de A10 Zuid en uitbreiding van het station Amsterdam Zuid. De snelweg A10 krijgt in totaal acht rijstroken voor doorgaand verkeer en vier stroken voor bestemmingsverkeer. De weg komt ter hoogte van het huidige station over een lengte van een kilometer onder de grond te liggen. Zo ontstaat ruimte om station Amsterdam Zuid te laten uitgroeien tot een hoogwaardig openbaarvervoerknooppunt en kan er bovengronds een aaneengesloten woon-, werk- en winkelgebied ontstaan. Verbetering van de luchtkwaliteit als gevolg van het ondergronds brengen van een deel van de A10 maakt kwalitatief hoogwaardige woningbouw mogelijk.

Impressie centrumgebied Zuidas met de A10 in de huidige en toekomstige situatie. (Beeld: brochure Zuidasdok)

Het project, dat 1,9 miljard euro kost en circa tien jaar zal gaan duren, bestrijkt het gebied tussen knooppunt De Nieuwe Meer en knooppunt Amstel, een afstand van circa zes kilometer. Bij die knooppunten worden doorgaand en afslaand verkeer van elkaar gescheiden. Het gehele project wordt in alle opzichten integraal opgepakt. Ruimtelijk en functioneel, maar bijvoorbeeld ook ten aanzien van de veiligheid. Er is een projectorganisatie opgezet waarin deskundigen vanuit onder andere Rijkswaterstaat, ProRail en de gemeente Amsterdam hun plek hebben gevonden.

Het plangebied Ontwerptracébesluit. Het gearceerde deel betreft het Ontwerpbestemmingsplan. (Beeld: brochure Zuidasdok)

Integraal is noodzaak

Hans Versteegen, projectdirecteur: “De integrale aanpak is noodzakelijk. Geen enkele partij kan zelfstandig haar opgave realiseren. Wil je hier iets van de grond krijgen, dan moet je dat in gezamenlijkheid doen. In 2012 hebben de opdrachtgevers – het Rijk, de gemeente Amsterdam, de stadsregio en de provincie Noord-Holland – elkaar weten te vinden in een unieke oplossing, met name voor het bereikbaarheidsprobleem van verschillende vervoersmodaliteiten. De opdrachtgevers weerspiegelen de modaliteiten die erin zitten: het Rijk vanuit weg en spoor, de gemeente Amsterdam vanuit openbare ruimte en metro, en de provincie en de stadsregio vanuit de openbaarvervoerterminal (OVT). Voor de projectorganisatie en het slagen van het project is het cruciaal dat de opdrachtgevers elkaar blijven vinden.”

“De risicoverdeling is 75% Rijk en 25% gemeente. Dat is maar een deel van de gezamenlijkheid. Het gaat ook om de uitvoering. Daarvoor is een aparte projectorganisatie opgezet. Daarin zitten weliswaar ook mensen vanuit die organisaties, maar zij zitten daar niet als belangenbehartiger van hun moederorganisatie. Met de kennis en expertise van alle domeinen hebben we een integrale organisatie die werkt aan een integrale opgave. Daarvoor hebben we bewust gekozen. Want als je gaat organiseren in verschillende pakketten, gaat iedereen terug naar zijn eigen achterban en kom je telkens opnieuw in discussies terecht.”

Alleen gezamenlijk

“We werken op een postzegel. Dat betekent dat de belanghebbende opdrachtgevers elkaar bij elke beweging tegenkomen. Als iedereen het in zijn eigen domein zou organiseren, is dat niet alleen heel inefficiënt, maar creëer je ook teleurstelling. De partijen kunnen hun doelen alleen met hulp van de anderen bereiken. Alleen in gezamenlijkheid kom je tot resultaten. En dat betekent ook dat iedereen concessies moet doen. En soms af moet wijken van wat je idealiter zou willen. Je kunt de taart van ruimte niet groter maken. Op het moment dat een partij meer ruimte vraagt, gaat dat altijd ten koste van ruimte van de ander. Je moet dus allemaal een beetje inschikken. De onderhandelingen hebben tot consensus geleid. Hoofdopgave is dus om ervoor te zorgen dat die gezamenlijkheid intact blijft.”

Voor station Amsterdam Zuid, onder het Mahlerplein, komt een fietsgarage voor drieduizend fietsen en een waterberging. Het ontwerp is gemaakt door architect Paul van der Ree van Movares. BAM is verantwoordelijk voor de bouw, die half augustus 2015 begint. (Beeld: Movares)

Parkeergarage Houtwal

Om in de binnenstad voldoende parkeergelegenheid te creëren zonder dat dit ten koste gaat van de leefbaarheid van het centrum, heeft de gemeente Harderwijk een nieuwe parkeergarage laten bouwen aan de Houtwal.

De garage is rond, heeft een diameter van 60 meter en biedt plaats aan 450 voertuigen. In het midden heeft hij een groot glazen dak, dat ervoor zorgt dat tot onderin – ruim 21 meter beneden het maaiveld – daglicht valt. De parkeerlagen hebben de vorm van een spiraal en liggen rond de lichtschacht die een doorsnede heeft van 12 meter. Op weg naar beneden komen bezoekers nergens een pilaar tegen. Voor het verlaten van de garage is een aparte rijbaan gemaakt rond de lichtschacht, die automobilisten zonder obstakels naar de uitgang voert.

Automobilisten rijden als in een kurkentrekker naar beneden. (Beeld: Gemeente Harderwijk)

Diepwanden

De garage is aanbesteed als design-and-constructcontract, en ontworpen en gebouwd door bouwcombinatie Houtwal. Voor de bouw zijn diepwanden gemaakt tot een diepte van 24,5 meter, waarbij elk paneel ongeveer 8 meter breed is en 1,2 meter dik. Een rubberen slab tussen de diepwanden zorgt voor een goede waterdichte afsluiting.

Nadat de ring van diepwanden gereed was, is het grootste deel van de grond hydraulisch ontgraven om overlast voor de omgeving door vrachtwagens te voorkomen. Het natte zand is opgezogen en via een persleiding naar een depot verpompt. De leidingen hiervoor zijn tijdelijk in het gemeentelijke riool aangebracht.

Tijdens graafwerkzaamheden zijn resten van een oude stadspoort ontdekt. Deze zijn gerestaureerd en staan tentoongesteld op de onderste verdieping van de parkeergarage.

Onderwaterbeton

De onderste vloer van de garage bestaat uit onderwaterbeton. Om opdrijven van deze vloer te voorkomen zijn ruim 400 GEWI-ankers aangebracht met een lengte van 34 meter. De paalpunten van deze ankers zitten 53 meter onder het maaiveld.

Voorafgaand aan het storten van het onderwaterbeton is een wapeningslaag van een meter dik aangebracht, die ervoor zorgt dat de vloer niet opbolt. Na uitharding van het onderwaterbeton bleek de aansluiting tussen de vloer en wanden nog niet volledig waterdicht. Daarom hebben duikers gaten door het beton geboord en met injectielansen een expanderende tweecomponentenhars geïnjecteerd tussen de vloer en de wanden. Toen de lekkage was verholpen, heeft de bouwcombinatie het water uit de bouwput gepompt en is begonnen met de afbouw.

Eerst is bovenop het onderwaterbeton een constructieve vloer gemaakt van 75 centimeter dik. Vervolgens zijn de middenkoker en de trappenhuizen gebouwd. Vanuit de trappenhuizen zijn de kolommen gesteld waarop de prefab betonnen parkeerdekken steunen. Het betreft acht betonnen kolommen voor de middenring en zestien voor de buitenring. Het niet-glazen deel van het dak bestaat uit ruim vijftig betonnen dakliggers met een gewicht van elk zestien ton. Het dak is voorzien van gras en het glas is beloopbaar om het gebied een parkachtige uitstraling te geven.

Sprinkler-installatie

De parkeergarage is voorzien van energiezuinige, dimbare led-verlichting. In totaal gaat het om 650 led-armaturen die vier standen hebben: 30, 25, 20 en 15 Watt. Verder is de garage uitgerust met een sprinklerinstallatie. Bij brand gaan de sprinklers nabij het vuur direct sproeien, zodat een brand geen kans heeft zich verder te ontwikkelen. Daardoor blijft de temperatuur bij een brand laag en blijft de bouwkundige constructie gespaard. Een ventilatiesysteem zorgt voor de afvoer van rook.

Visie van: Martin van Staveren

Van Geo-Impuls richting Geo-Gedrag

““In 2009 is het vijfjarige programma Geo-Impuls gestart. Doel was om geotechnisch falen in bouw- en infraprojecten structureel terug te dringen, evenals de bijbehorende faalkosten en ander ongerief. Op het internationale ISGSR2015-congres in oktober na, is het programma zo goed als afgerond. Dus hoogste tijd voor een vooruitblik op de komende vijf jaar. Waar gaan we heen na Geo-Impuls?

Anno 2015 blijkt Geo-Impuls om meerdere redenen een succes. Georisicomanagement, letterlijk en figuurlijk een verdieping van projectrisicomanagement, is praktisch uitgewerkt en door de sector omarmd. Meer dan tweehonderd professionals uit ruim veertig organisaties hebben hun kennis, ervaring en krachten gebundeld, met als resultaat tal van praktische producten. Die zijn voor iedereen kosteloos toegankelijk via geoimpuls.org. Hoewel er vanaf het begin voor is gekozen om faalkostenreductie niet direct te meten – dit bleek geen haalbare kaart – is het aantal geotechnische incidenten in Cobouw in de periode 2010-2014 met vijfenzeventig procent gedaald. Dat is winst op het puntje imagoschade. En dan is er nog het Slotmanifest, dat op 23 april op de GeoTop 2015 is ondertekend.

Dit Slotmanifest verbindt het verleden met de toekomst. Hierin verklaren de Geo-Impulspartners namelijk dat georisicomanagement gewoon als onlosmakelijk onderdeel van projecten toegepast moet worden. Ook verklaren ze elkaar daar blijvend op aan te spreken. Hier ligt dus dé kans om de resultaten van Geo-Impuls als sector te verzilveren. Door het omzetten van woorden in daden, om te komen van goedbedoelde intenties tot de daadwerkelijke uitvoering.

Hierbij zullen we echt nog wel wat obstakels tegenkomen, ondergronds én bovengronds. Zo is elkaar aanspreken in opdrachtgever-opdrachtnemerrelaties niet altijd eenvoudig, zeker als partijen in de aanbestedingsfase zitten. Toch is helderheid over bijvoorbeeld de contractverantwoordelijkheid voor geotechnische risico’s juist dan essentieel, om er later in het project kosteneffectief mee om te kunnen gaan. Dit vergt flexibiliteit in bestaande kaders en wederzijdse overtuigingen. Een voor de hand liggende bestemming na Geo-Impuls is dan ook Geo-Gedrag, met de Bouwcampus als expeditieleider. Er gloort een mooie toekomst na Geo-Impuls!”

Martin van Staveren was adviseur van het Geo-Impulsprogramma. Hij is auteur van de praktijkgids Geotechniek in Beweging, adviseur risicomanagement bij bureau VSRM en kerndocent aan de masteropleidingen Risicomanagement en Public Management, Universiteit Twente.

(Foto: Vincent Basler)

'Kan de onderdoorgang niet gewoon daar?'

Men neme een Bouw Informatiemodel (BIM), drie grote smartboards en een zaal vol stakeholders en je doet aan Virtual Design and Construction. Zo eenvoudig lijkt het op het eerste gezicht, maar niets is minder waar. De VDC-methode van Royal HaskoningDHV is een omslag in denken; een andere aanpak die lef vergt.

Volgens Royal HaskoningDHV zorgt Virtual Design and Construction (VDC) voor een breed gedragen ontwerp, minder faalkosten en een snellere doorlooptijd. “Je krijgt meer voor minder”, stelt Jeffrey Rampaart, projectmanager bij het adviesbureau.

“Bij een bouwproject heb je te maken met een keten van partijen. Iedereen streeft ernaar om een efficiënt ontwerp te creëren, waarmee het project binnen het budget, binnen de gestelde tijd en naar ieders tevredenheid kan worden gerealiseerd. Maar de schakels in de keten werken vaak relatief solitair en dat kan een efficiënt ontwerp in de weg staan. Elke partij heeft zijn eigen beleving en verwachtingen bij het project: hoe zorg je dat deze bij elkaar komen? Hoe zorg je ervoor dat iedereen die een belang heeft bij het project, meewerkt aan de oplossing? Wij denken dat je dit bereikt met een visuele methode zoals VDC.”

In beeld

VDC is ontwikkeld door Stanford University en door Royal HaskoningDHV geadopteerd en verder ontwikkeld. De methode is het best uit te leggen aan de hand van de iRoom, een ruim opgezette kamer met drie smartboards aan de muur. Hierop is tijdens een VDC-sessie voor een bouwproject een 3D-weergave van het ontwerp te zien (een BIM), evenals andere relevante informatie, zoals het Programma van Eisen of een luchtfoto van het plangebied. De deelnemers – vertegenwoordigers van alle stakeholders in het project – gebruiken de borden om ontwerpoplossingen te onderzoeken. Hoe scherp mag de bocht maximaal zijn, kunnen we nog een middenberm toevoegen, hoe ervaart een fietser de onderdoorgang? Op zulke vragen wordt ter plekke een antwoord gezocht.

De iRoom in het kantoor van Royal HaskoningDHV in Amersfoort. (Foto: RHDHV)

Het visualiseren van het ontwerp is dan ook een belangrijk aspect van VDC. Het is echter niet het enige. Ook de organisatie en het proces spelen een rol. Bij het selecteren van de deelnemers voor een VDC-sessie moet bijvoorbeeld over de organisatie worden nagedacht: je hebt alle stakeholders nodig om tot een echt integraal ontwerp te komen. Rampaart: “Met VDC werk je geïntegreerd op drie niveaus: een parallel proces vervangt het traditionele volgtijdelijke proces, je betrekt technische en niet-technische stakeholders en op productniveau integreer je zaken zoals ramingen, PvE, risicodossier, enzovoort.”

Simultaan, snel en samen

“VDC is dus meer dan het samen kijken naar een BIM. Sterker nog, het kan ook zonder BIM. Gezamenlijk nadenken over het ontwerp kan ook met flip-overs en post-its. Maar om alle stakeholders bij het proces te betrekken, moet je het ontwerp goed in beeld brengen en dat is bij de complexe projecten van tegenwoordig vrijwel onmogelijk zonder digitale hulpmiddelen”, meent Rampaart.

“De schermen zorgen er daarnaast voor dat je verschillende informatiebronnen kunt combineren. Je kunt bijvoorbeeld de uitgangspunten van het ontwerp letterlijk naast de visualisatie houden, of de huidige en geplande situatie met elkaar vergelijken. Door de visuele benadering kan bovendien iedereen meepraten, de barrière tussen technisch specialisten en beleidsmakers en bestuurders wordt veel kleiner. De klant voelt zich hierdoor meer gehoord. En misschien nog wel belangrijker: je kunt direct laten zien wat een wijziging in het ontwerp voor effect heeft, waardoor sneller keuzes gemaakt kunnen worden. Wat gebeurt er als je de onderdoorgang wat meer naar links plaatst? Is er dan nog voldoende ruimte voor een fietspad? Voor zulke wijzigingen hoef je nu niet terug naar de tekentafel. Je voert het ter plekke uit, waarna je ook gelijk het resultaat kunt bespreken. Dat werkt enorm efficiënt.”

Ideaal dus, dat VDC. Waarom zijn we nog niet massaal overgestapt? Rampaart: “Met VDC wordt het ontwerpproces een open proces, iedereen heeft inspraak. Dat schrikt sommige mensen af. De civiele bouwwereld is een conservatieve wereld, omdat de risico’s vaak groot zijn. Een radicaal andere aanpak wordt hierdoor niet direct omarmd. Je moet met een heel andere blik naar je eigen processen kijken. Daar is lef en vertrouwen voor nodig.”

Echte data

Royal HaskoningDHV gebruikt VDC nu twee jaar, en met succes. Rampaart denkt dat het bij projecten gemiddeld een kostenbesparing van tien tot dertig procent oplevert. “Daarnaast krijgt de klant een betere oplossing, omdat je de vraag nog eens tegen het licht houdt.” VDC leidde onder meer bij een alternatievenstudie voor spoorkruisingen in Ermelo tot tevredenheid van de klant. “We hebben daar de bestaande omgeving gedigitaliseerd en vervolgens de nieuwe plannen erin verwerkt”, vertelt Rampaart. “Zo ontstond er een heel nauwkeurig beeld van de toekomstige situatie. De gemeente kan het plan hiermee goed uitleggen aan het college, de gemeenteraad en inwoners.”

Het verschil met ‘gewone’ visualisaties is dat het 3D-model bij VDC gebaseerd is op de data van zowel de omgeving als het ontwerp. Ook de ondergrond wordt meegenomen. Bodem- en hydrologisch onderzoek, het DINOLoket, de GBKN en het Kadaster leveren veel van de benodigde gegevens. Maar zoals menig ondergrondse bouwer weet, blijft er altijd onzekerheid bestaan, bijvoorbeeld over de lokale bodemgesteldheid en de ligging van kabels en leidingen. Rampaart beaamt dat. “Informatie over ondergrondse infrastructuur wil inderdaad nog wel eens afwijken van de werkelijkheid. Bij VDC levert dat echter minder grote hindernissen op, omdat afwijkingen in de data veelal te klein zijn om het proces te verstoren. Bovendien zijn eventuele consequenties snel in beeld te brengen en aan te passen.”

Tijdens de VDC-sessie onderzoeken stakeholders mogelijke ontwerpoplossingen. (Foto’s: RHDHV)

Beleving

“De kracht van VDC is dat het ontwerp gaat leven. Techniek wordt beleving. Natuurlijk kunnen we de wethouder van Amersfoort vertellen wat je als automobilist ziet als je de tunnel inrijdt. Of een plaatje daarvan laten maken en hem dat laten zien. Maar als de wethouder die vraag stelt in een VDC-sessie, kun je ter plekke inzoomen op de inrit, de camera draaien en de situatie in beeld brengen. Tijdens een VDC-sessie voor een nieuwe onderdoorgang in Ermelo opperde iemand halverwege: ‘Kan de onderdoorgang niet gewoon in het midden?’. Toen hebben we het object domweg opgepakt en langs het spoor gesleept om te kijken waar hij paste. Zo kom je er ook achter wat níet kan en dat is evengoed nuttig om te weten.”

Zinkvoegen

Over de levensduurverwachting van zinkvoegen in tunnels in Nederland blijkt veel onzekerheid te bestaan. Het COB-netwerk heeft daarom een commissie ingesteld om onderzoek te doen. Op 10 december 2014 is de eerste rapportage opgeleverd. Daarna is de commissie verder gegaan met praktijkonderzoek. Inmiddels is duidelijk dat de opgaven breder zijn. De commissie is daarom opgenomen in het tunnelprogramma.

Zinkvoegen in tunnels in Nederland zijn nauwelijks inspecteerbaar en niet vervangbaar. Lekkage van de voegconstructies kan echter leiden tot onverwachte en langdurige afsluiting van rijstroken van de tunnels, met grote economische schade en hoge herstelkosten voor de tunnelbeheerders tot gevolg.

Tunnelprogramma

Omdat de instandhoudingsopgave zich niet beperkt tot zinkvoegen, is het onderzoek naar de levensduur van ondergrondse constructies onderdeel geworden van het tunnelprogramma. Binnen de ontwikkellijn Civiel anders (ver)bouwen wordt de commissie uitgebreid en anders ingericht. Er komen subcommissies over drie onderwerpen: voegen, deformaties van tunnels en degradatie van materialen. Daarboven komt een overkoepelende stuurgroep die de samenhang en kwaliteit van het onderzoek borgt.
>> Lees meer

In mei 2013 werd de Tweede Coentunnel opengesteld voor verkeer. Direct daarna is gestart met de renovatie van de Eerste Coentunnel. De Coentunnel Company is via een DBFM-contract tot en met 2037 verantwoordelijk voor het onderhoud van beide Coentunnels. (Foto: Beeldbank RWS/Aerophoto Schiphol)

Eerste fase

De Coentunnel Company benaderde in 2013 het COB om het probleem – in samenwerking met het netwerk – structureel te analyseren en beheersbaar te maken. Er is gekozen voor een gefaseerde aanpak waarbij op basis van een beperkt budget binnen een redelijke termijn de eerste resultaten kunnen worden bereikt. In de eerste fase gaat het niet om die ene volledig uitgewerkte optimale oplossing, maar om het bepalen van kansrijke oplossingsrichtingen en het komen tot onderzoeksvoorstellen.

Na de uitvraag in augustus 2013 zijn er zestien experts uit het COB-netwerk aangesteld. Op 30 september 2013 kwamen zij voor het eerst bij elkaar, onder leiding van COB-coördinator Brenda Berkhout. Tijdens de startbijeenkomst is er direct inhoudelijk naar het probleem gekeken. Alex Kirstein van de Coentunnel Company vertelde over hun onderzoek naar de zinkvoegconstructies in de Eerste Coentunnel en Leo Leeuw, voormalig uitvoeringsingenieur bij Rijkswaterstaat en nu adviseur bij Nebest, gaf een presentatie over zijn onderzoek naar dilatatievoegen (zie rapport rechts).

Vervolgens is bepaald waar het huidige onderzoek zich op moest richten: het stoppen van bestaande lekkages en het voorkomen van nieuwe. Hiervoor is meer inzicht in het aantastingsmechanisme nodig en moet er een analyse komen van incidenten. Wanneer is interventie noodzakelijk? Welke monitorings- en inspectietechnieken zijn geschikt? Het afdichtingsysteem moet worden bekeken, evenals de wapening van de tandconstructie.

Het doel was niet om alle voegen in alle tunnels in beeld te hebben, maar te kijken naar de tunnels waarvan er informatie binnen de werkgroep beschikbaar is. Dit waren bijvoorbeeld tekeningen, details en conserveringsinformatie. De leden hebben deze informatie meegenomen naar de werksessies en met elkaar doorgenomen. Daarnaast hebben de werkgroepleden contact opgenomen met collega’s om extra informatie in te winnen.

Na diverse werksessies in 2013 en 2014 is op 10 december 2014 de rapportage Instandhouding zinkvoegen opgeleverd. Het rapport omvat de probleemanalyse, oplossingen of oplossingsrichtingen op basis van de beschikbare kennis en voorstellen voor nader onderzoek.

Praktijkonderzoek

Ter aanvulling op het rapport uit 2014 is extra endoscopisch onderzoek uitgevoerd bij vier tunnels: de Drechttunnel, de Noordtunnel, de Kiltunnel en de Vlaketunnel. In februari 2015 zijn de resultaten hiervan opgeleverd. Op basis hiervan is de commissie verdergegaan met praktijkonderzoek. Zo is een aantal voegen van de Heinenoordtunnel onderzocht. De onderzoeksresultaten bevestigen het beeld dat tijdens de eerdere onderzoeken in de Drecht-, Noord, Vlake- en Kiltunnel verkregen is. Daarbij is onder andere in alle voegen water aangetroffen dat van de weg afkomstig is. In een aantal gevallen is corrosie op de klemlijsten en bouten van de klemverbinding waargenomen. In de Kiltunnel is bij één bout een forse staalafname gemeten, waarbij zowel vóór als achter de klemstrip onderzoek is verricht. Vraag is nu in hoeverre hier sprake is van een probleem. Functioneert het Gina-profiel nog en zo ja, voor hoe lang? Hoeveel staalafname is toelaatbaar? Zijn we in staat om bouten en klemlijsten te vervangen?

Op 9 oktober 2015 heeft Nebest, samen met RWS, endoscopisch onderzoek uitgevoerd in de Kiltunnel in Dordrecht. (Foto: COB)

Deelnemers

Klik op het bedrijfslogo voor de deelnemende personen

BAM Infraconsult B.V.

Locatie: Gouda, H.J. Nederhorststraat 1
Nhut Nguyen, rol: Lid

BESIX S.A.

Locatie: Brussel, Avenue des Communautés 100
Jan van Steirteghem, rol: Lid

COB

Locatie: Delft, Van der Burghweg 2
, rol: Begeleider/Facilitator

DEME Infra

Locatie: Brussel, Herrmann-Debrouxlaan 42
Lode Franken, rol: Lid

DEME Infra NL BV

Locatie: Dordrecht, Kilkade 2
Hans Mortier, rol: Lid
Ruben van Montfort, rol: Secretaris

Elumint B.V.

Locatie: Zoetermeer, Lenastroom 3
Harry de Haan, rol: Lid

Gemeente Rotterdam Stadsontwikkeling

Locatie: Rotterdam, Wilhelminakade 179
Kees Blom, rol: Lid

HaskoningDHV Nederland B.V.

Locatie: Amersfoort, Laan 1914 35
René Kuiper, rol: Lid

Havenbedrijf Rotterdam N.V.

Locatie: Rotterdam, Wilhelminakade 909
Egbert van der Wal, rol: Lid

Kiltunnel

Locatie: Dordrecht, Provincialeweg 43-nr 102
Arie Bras, rol: Lid

MH Poly Consultants & Engineers bv

Locatie: Bergen Op Zoom, Peter Vineloolaan 46b
Bard Louis, rol: Lid

Mobilis TBI infra

Locatie: Apeldoorn, Fauststraat 3
Gerard van den Berg, rol: Lid

Movares Nederland B.V.

Locatie: Utrecht, Daalseplein 100
Jan Jonker, rol: Lid
Peter Hoogen, rol: Lid

Nebest B.V.

Locatie: Vianen, Marconiweg 2
Jan Kloosterman, rol: Secretaris
Leo Leeuw, rol: Lid

ProRail

Locatie: Rotterdam, Delfseplein 27j
Edwin Westerduijn, rol: Lid

Rijkswaterstaat GPO

Locatie: Utrecht, Griffioenlaan 2
Ad Nieuwenhuyzen, rol: Lid
Carolien Nieuwland, rol: Lid
Gerrit Wolsink, rol: Lid
Harry Dekker, rol: Opdrachtgever
Martijn Blom, rol: Lid

Rijkswaterstaat PPO Programma's, Projecten en Onderhoud

Locatie: Haarlem, Toekanweg 7
Stephan van der Horst, rol: Lid
Theo van Maris, rol: Lid

Strukton Civiel Projecten b.v.

Locatie: Utrecht, Westkanaaldijk 2
Nico Vink, rol: Lid

Trelleborg Ridderkerk B.V.

Locatie: Ridderkerk, Verlengde Kerkweg 15
Frans Melchers, rol: Lid
Joel van Stee, rol: Lid

TU Delft Faculteit Civiele Techniek & Geowetenschappen

Locatie: Delft, Stevinweg 1
Wout Broere, rol: Lid

Tunnel Engineering Consultants

Locatie: Amersfoort, Laan 1914 No 35
Hans de Wit, rol: Lid

Van Hattum en Blankevoort

Locatie: Vianen, Lange Dreef 13
Sallo van der Woude, rol: Lid

Witteveen+Bos Raadgevende Ingenieurs

Locatie: Rotterdam, Blaak 16
Brenda Berkhout, rol: Voorzitter

BIM’men in de bodem

De nieuwe verbinding tussen Houten en de A12 komt er op papier, in de praktijk én virtueel. Aannemer Dura Vermeer, die het project op 19 februari 2013 gegund kreeg, maakt bij het ontwerp, de aanleg en het beheer en onderhoud gebruik van een Bouw Informatie Model (BIM). Een bijzondere keuze, want bij infraprojecten zijn BIMs lang niet zo gebruikelijk als in de woningbouw.

Kort gezegd is een Bouw Informatie Model (BIM) een digitaal 3D-model van het te realiseren object, waarin alle relevante informatie is opgeslagen. In het BIM van een nieuwbouwhuis kun je bijvoorbeeld opzoeken waar het raam komt, hoe groot het is en welke materialen er gebruikt worden. Omdat alle betrokken partijen in hetzelfde model werken, zijn de data altijd compleet en up-to-date. Met name in de woningbouw kan een BIM winst opleveren, omdat de modelonderdelen vaak herbruikbaar zijn (voor tien ramen hoef je er maar één te modelleren). Bij infraprojecten speelt dit voordeel in mindere mate en staat de toepassing van BIM nog in de kinderschoenen.

Procescoördinator Mark van der Meer: “Voor het project bij Houten, de N421, hebben we om meerdere redenen gekozen voor een BIM. Het is allereerst een communicatiemiddel naar de omgeving en de opdrachtgever. Hinderbeperking is één van onze projectdoelstellingen en het was een belangrijk criterium bij de gunning. Ten aanzien van fasering, logistiek en werkwijze hebben we een aantal beloftes gedaan. Met het BIM kunnen we die beter nakomen en laten zien dát we ze nakomen. Je kunt straks heel precies laten zien wat er bij mensen voor de deur gebeurt, waar de bouwwegen lopen, welke tijdelijke constructies er zijn. Bovendien is duidelijk wanneer er werkzaamheden zijn, want de fasering verwerken we ook in het model.”

Ondergronds

Het BIM voor het project in Houten bevat ook ondergrondse objecten, zoals de tunnel die bij de Achterdijk wordt aangelegd. “Toen die aan het model werd toegevoegd, bleek dat het voorkeurstracé van de provincie voor kabels en leidingen precies de folieconstructie doorkruist”, legt Jeroen Vels, 3D-modelleur en BIM-specialist, uit. “Dat geeft mogelijke lekkagepunten die je wilt voorkomen.” Met de visualisaties uit het BIM gaan ze nu samen met de provincie een oplossing bedenken. Van der Meer: “Zonder BIM zouden we deze raakvlakken minder snel hebben vastgesteld: je vindt ze nu direct als je aan het ontwerpen bent, en niet pas erna, als je plannen met elkaar gaat vergelijken.”

Volgens de heren heeft een BIM zeker een meerwaarde voor ondergrondse aspecten, omdat daar de meeste risico’s zitten. Tegelijkertijd kunnen onzekerheden in de bodem het model minder betrouwbaar maken, of valt dat mee? Vels: “Het klopt dat je sommige dingen niet exact in een BIM kunt vastleggen. Van kabels en leidingen is de diepte bijvoorbeeld nergens geregistreerd. Maar de x/y-locatie wel, dus op die plek voeg je de kabel toe aan het model en dan kun je schuiven met de diepte. Als we ergens problemen vermoeden, gaan we met proefsleuven na hoe diep de kabel in de praktijk ligt.”

“De grondopbouw leggen we nog niet vast in het BIM, die is te onzeker. In het DINOloket staat vooral puntinformatie en je kunt verschillende punten niet zomaar met elkaar verbinden: dat een zandlaag bij punt A en punt B op diepte X ligt, wil niet zeggen dat de laag overal tussen A en B op diepte X ligt. De puntinformatie uit het DINOloket en onze eigen sondeerresultaten kun je wel toevoegen om projectinformatie centraal te houden. Ik zie constructeurs echter nog niet het BIM raadplegen voor sondeerwaarden, zo ver zijn we nog niet”, aldus Vels.

3D versus 2D

Ook gaat het BIM nog niet de bouwplaats op. Als het ontwerp klaar is, worden voor de uitvoerders 2D-tekeningen uitgedraaid. “Onze sector is conservatief, je kunt niet zomaar met een 3D-model komen aanzetten. Ook bouw- en woningtoezicht is gewend op een bepaalde manier hun tekeningen te krijgen”, vertelt Vels. “De tekeningen worden wel uit het model gegenereerd, dus als er iets in het model verandert, verandert dat ook op de tekeningen. Toch is hier veel winst te boeken. Ik ben nu de helft van de tijd kwijt aan het modelleren en de andere helft aan het maken van tekeningen. Op de modelleertijd kun je niets verdienen, want die heb je altijd nodig, maar het maken van tekeningen kan sneller. In de toekomst gaat het model wellicht mee naar de bouwkeet en printen ze daar de tekeningen die ze nodig hebben.”

Combineren

Over het algemeen gaat een BIM over één bouwwerk, maar zeker in het geval van infraprojecten staat een constructie zelden op zichzelf. Bij het project van Dura Vermeer gaat ProRail bijvoorbeeld aan de slag met een spoortunnel. “Hun tunnel loopt straks onder onze weg door. Omdat de aanbesteding nog loopt, is er verder nog weinig bekend, maar om de raakvlakken te beheersen, zullen we telkens als zij een fase af hebben, de tunnel verwerken in ons model. Het is even afwachten hoe gedetailleerd we dat kunnen doen en wat de kwaliteit van het model is, maar zo willen we het wel insteken”, zegt Van der Meer.

Vels: “De volgende stap – maar dat is toekomstmuziek – is een nationale database van BIMs. Je kunt erop wachten dat opdrachtgevers eisen dat je niet alleen de echte weg en kunstwerken oplevert, maar ook het model ervan. De bottlenecks zijn nog welk formaat je moet opleveren en welke informatie je aan het model moet hangen.”

“Op termijn moeten we gewoon van de term ‘BIM’ af. Het principe van 3D-modelleren, centraal opslaan van informatie en koppelen van informatie aan objecten, is iets wat je in de toekomst standaard moet toepassen”, aldus Vels.

Assen, Drents Museum

Het Drents museum staat in het historische centrum van Assen op de plek van het voormalig klooster Maria in Campis. Toen het museum moest worden uitgebreid was duidelijk dat er binnen het oude kloostercomplex geen ruimte was. Architect Erick van Egeraat vond de oplossing in de ondergrond: hij ontwierp een nieuwe ondergrondse vleugel voor het museum net buiten het kloostercomplex.

Op 16 november 2011 heeft toenmalige Hare Majesteit Koningin Beatrix het vernieuwde Drents Museum geopend. De nieuwe ondergrondse uitbreiding heeft een oppervlak van in totaal tweeduizend vierkante meter. Daarvan komt de helft voor rekening van de nieuwe expositievleugel. Naast deze vleugel heeft het museum ook een nieuwe entree, een café en een grotere museumwinkel gekregen.

Nieuwe vleugel Drents Museum. (Foto: J. Collingridge)

Bouwkuip

Voor de bouw van de ondergrondse uitbreiding moest een grote bouwkuip worden gemaakt, bestaande uit twee rechthoekige delen die schuin achter elkaar liggen en via een relatief smalle sleuf met elkaar zijn verbonden. Door gebruik te maken van een waterdichte laag potklei op een diepte van achttien meter, was bronbemaling in de kuip niet nodig.

Vanwege het risico op schade aan de nabij gelegen monumentale bebouwing zijn voor de realisatie van de wanden van de bouwkuip drie verschillende technieken gebruikt. Voor het deel van de kuip dat het verst van de monumentale gebouwen af ligt zijn damwandplanken ingetrild, nadat de grond was losgeboord. Dichterbij, waar de kuip tussen de gebouwen ligt, zijn soilmix-wanden gemaakt. Bij deze trillingsvrije techniek is de lokale ondergrond met een frees tot in de laag potklei losgewoeld en vermengd met een cementmix, waardoor een stevige grond- en grondwaterkerende constructie is ontstaan.

De derde techniek, jetgrouten, is gebruikt voor het gedeelte van de bouwkuip dat onder het bestaande monumentale hoofdgebouw ligt. Ook dit is een trillingsvrije techniek. Via gaten in de vloer is met injectielansen een groutspecie onder hoge druk in de grond onder het gebouw geïnjecteerd. De groutkolommen die op deze manier zijn gevormd, hebben een diameter van circa 1,5 meter en een lengte van 13 meter. Om de stabiliteit van de verschillende delen van de bouwkuip te garanderen, zijn tijdelijk stempels geplaatst.

Koetshuis

Op de plek waar de bouwkuip moest komen stond een monumentaal koetshuis. Om de kuip te kunnen maken, is dit koetshuis opgevijzeld, voorzien van een stalen draagframe en vervolgens over een afstand van circa 25 meter verplaatst en daar tijdelijk ‘geparkeerd’. Nadat de ondergrondse bouw gereed was, is het koetshuis weer naar zijn oorspronkelijk plek geschoven. Daar is het een meter opgetild en op een glazen plint is geplaatst.

Het koetshuis – dat tussen het hoofdgebouw van het museum en de nieuwe vleugel in staat – is de entree voor het vernieuwde museum. Via een fraai vormgegeven trap dalen de bezoekers hier af naar de ondergrondse centrale hal, die volledig onder het maaiveld ligt. De glazen plint zorgt ervoor dat in deze hal daglicht naar binnenvalt. Vanuit de hal kunnen bezoekers twee kanten op, naar de nieuwe ondergrondse vleugel of naar de trap en lift die toegang bieden tot de exposities in het hoofdgebouw. De gehele ondergrondse ruimte is in wit uitgevoerd en valt op door vloeiende vormen en statige kolommen.

Het dak van de nieuwe ondergrondse expositievleugel steekt iets boven het maaiveld uit. Het is opgebouwd uit vier verspringende dakvlakken die ruimte bieden aan verticale lichtstroken. Via deze lichtstroken valt er indirect daglicht in de expositieruimte. Voor de dakconstructie zijn stalen liggers gebruikt. Op het dak is een openbare tuin aangelegd.

Aanleg daktuin (Foto: Drents Museum)

'De businesscase is gebaseerd op beschikbaarheidsafspraken'

Binnenkort wordt de Tweede Coentunnel opgeleverd. Dan zal blijken of de DBFM-constructie, die erop neerkomt dat Rijkswaterstaat de tunnel voor 24 jaar leaset, aan de verwachtingen voldoet. Gerard Minten, CEO van de Coentunnel Company: “Het DBFM-concept is goed als je exact weet wat je gaat doen. De investeerders willen weten waar ze aan toe zijn en eisen duidelijkheid.”

De financiële component in de contractvorm vergt een specifieke aanpak. Gerard Minten vervolgt over de noodzaak om investeerders vooraf zo nauwkeurig mogelijk te kunnen vertellen wat het project behelst: “Natuurlijk is het zo dat je ondergronds altijd met onvoorspelbare componenten te maken hebt, maar dat kun je inpassen. Wat je niet kunt doen, is onderweg de spelregels veranderen.”

Een volledig voorspelbaar project leidt tot de vooronderstelling dat DBFM tot optimalisatie en lagere kosten leidt. De eindafrekening kan uiteraard pas over vierentwintig jaar worden gemaakt, maar Gerard Minten noemt al wel de verschillende invloedsfactoren: “De financieringskosten zijn juist hoger, omdat je als marktpartij nooit kunt lenen tegen het rentepercentage dat de overheid krijgt. Daar staat het voordeel tegenover dat de aannemer kan optimaliseren. Die twee aspecten kun je niet zomaar salderen. Verder geeft de financieringscomponent een heel andere dimensie aan een project als de Tweede Coentunnel. De financiers steken er vijf jaar lang geld in, voordat de geldstroom vanuit Rijkswaterstaat gaat lopen. Dat is een belangrijk drukmiddel voor tijdig opleveren. Daarnaast volgt optimalisatie uit de afspraak om te betalen op basis van beschikbaarheid.”

“In het contract zijn boetes opgenomen voor wegafsluitingen, falen van technische systemen en dergelijke. Daarbij hoeft overigens geen sprake te zijn van fysieke afsluiting. Ook ‘virtueel dicht’ kan leiden tot boetes. De beschikbaarheidsafspraken leiden tot het eventueel dubbel uitvoeren van systemen en een sterke focus op kwaliteit van materialen voor de lange termijn. Daar is de businesscase op gebaseerd. De onderaannemer neemt het risico dat hij bouwt voor een vast bedrag. De Special Purpose Company (zie kader) is zoveel mogelijk risicovrij.”

Kwalitatief rendement

Een tweede vooronderstelling is dat de DBFM-aanpak innovatie voedt en leidt tot slimme oplossingen. Dat zet de deelnemende aannemer op voorsprong, omdat hij dergelijke innovaties elders weer toe kan passen. De praktijk blijkt weerbarstiger. Gerard Minten: “Een groot deel van bijvoorbeeld de Tunnelstandaard is gelijktijdig met de bouw van de Coentunnel ontwikkeld. We hebben tijd en ruimte gekregen om zaken samen met Rijlswaterstaat uit te zoeken. Toch blijkt het blijven voldoen aan de contractuele verplichtingen een zwaardere stempel te drukken op innovaties dan de mogelijke verbetering van de concurrentiepositie van deelnemende partijen.”

Slimme oplossingen als gevolg van de DBFM-aanpak doen zich wel degelijk voor. Gerard Minten: “Het denken vanuit zo min mogelijk afsluitingen leidt tot verbeteringen. Zo zijn de tunneltechnische installaties (TTI’s) bij de Tweede Coentunnel geconcentreerd op een aantal goed bereikbare plekken in het middentunnelkanaal en is ledverlichting toegepast om onderhoud te beperken. Ook buiten de tunnel zijn de verkeerstechnische installaties geconcentreerd in de VTI-huisjes langs de weg. Daardoor is slimmer onderhoud mogelijk. Het zijn optimalisaties die nog tijdens het bouwproces zijn doorgevoerd, omdat duidelijk werd dat je het risico op afsluitingen verkleint.”

De verkeerstechnische installaties zijn geconcentreerd in VTI-huisjes langs de weg. (Foto: Coentunnel Company)

Juridificering

De financiële component verhoogt risico’s en daarmee de noodzaak om die risico’s zo veel mogelijk af te dekken. Een DBFM-contract leidt dan ook tot hogere juridische kosten. Gerard Minten geeft aan dat de transactiekosten ongeveer drie procent van de investering bedragen, het dubbele van een contract zonder F-component. “In ons consortium-businessmodel houden we daar rekening mee. Bij consortiumpartner Vinci hebben we bijvoorbeeld een grote concessietak die met tientallen projecten wereldwijd al heel veel ervaring heeft met deze werkwijze. Vanwege dat hoge percentage transactiekosten zijn projecten van 500 miljoen euro voor Vinci zo’n beetje de ondergrens.”

Aannemers

Alhoewel er ook de kritiek is dat DBFM-contracten de keuzevrijheid voor de besteding van overheidsgeld in de toekomst te veel zouden beperken, wordt algemeen aangenomen dat er meer met DBFM-contracten gewerkt zal worden. Reden voor de aannemers van ons consortium om vroeg in te stappen, ervaring op te doen en ervoor te zorgen dat zij een DBFM-project aan hun trackrecord kunnen toevoegen.

Gerard Minten: “De meeste aannemers zullen aangeven dat een DBFM-contract op lange termijn interessant is, omdat je ook het onderhoud hebt. De vraag is wel of alle partijen onderkend hebben waar zij aan begonnen. Het voordeel zit in de herhaling. Je moet vaker DBFM-projecten doen om er voordeel uit te halen. Voor de toekomst verwacht ik een splitsing. Er zal een groep zijn die voor de lange termijn gaat en gelooft in dit concept. Dat zijn de bedrijven die hun organisatie eromheen opbouwen op basis van schaalvoordelen.”

Open!

Inmiddels is de Tweede Coentunnel open voor verkeer. Agmi, ontwerper en installateur van onder meer de (led)verlichting, maakte een leuke video over de aanleg:

https://youtu.be/A5HcXQfd6-0

>> Lees het nieuwsbericht over de nieuwe Tweede Coentunnel

Zwemmen in een schuilkelder

De Finse hoofdstad Helsinki beschikt sinds 2010 over een integraal ondergronds masterplan. Het plan brengt de bestaande ondergrondse toepassingen in kaart en voorziet in reserveringen voor toekomstig gebruik. Volgens Ilkka Vähäaho, hoofd van de geotechnische divisie van Helsinki en voorzitter van de Finse tunnelassociatie, is het plan een onmisbaar hulpmiddel voor duurzame ontwikkeling van de stad en zijn ondergrond.

Vähäaho: “Het masterplan voor de ondergrond is bijvoorbeeld het fundament voor de bijdrage van de ondergrond aan een duurzaam en esthetisch acceptabel landschap en behoud van ontwikkelmogelijkheden voor toekomstige generaties. Zo speelt het masterplan een belangrijke rol in de ruimtelijke ordening.”

Het ondergrondse masterplan voor Helsinki brengt zowel de bestaande als toekomstige ondergrondse ruimten, tunnels en vitale ondergrondse onderlinge verbindingen in kaart. In het plan zijn reserveringen opgenomen voor nu nog onbekende toekomstige ondergrondse toepassingen. Op basis van uitgebreid geologisch onderzoek is bepaald welke plekken in de ondergrond geschikt zijn. Daarbij is vooral gekeken welke nog niet benutte ondergrondse capaciteit in de toekomst een bijdrage kan leveren aan het verminderen van de druk op het stadscentrum. Anders dan in Nederland, waar de meeste ondergrondse bouwwerken ‘stand-alone’ zijn, ontwikkelt de ondergrond van Helsinki zich door het verbinden van bestaande en nieuwe ondergrondse toepassingen steeds meer tot een aaneengesloten ondergrondse stad.

De integrale aanpak biedt extra voordelen boven op die van het sec ondergronds gaan. Er is sprake van multifunctioneel ondergronds ruimtegebruik, zoals bij het ondergrondse zwembad in Itäkeskus, dat in tijden van nood kan worden omgevormd tot schuilkelder. Een datacenter onder een kathedraal wordt via een ondergronds buizenstelsel gekoeld met zeewater. De restwarmte gaat – ook weer ondergronds – naar de stadsverwarming.

Er zijn grote voordelen verbonden aan multifunctionele leidingentunnels. Ilkka Vähäaho geeft aan dat het masterplan ook een bijdrage levert aan een betrouwbare energievoorziening en optimalisatie van energie-opwekking. Kosten kunnen worden gedeeld door meerdere gebruikers. Bovengronds ontstaat ruimte voor nieuwe initiatieven, en het uiterlijk en imago van de stad worden verbeterd. Onderhoud is eenvoudiger en goedkoper en de impact van werkzaamheden aan ondergrondse leidingen op het dagelijks leven bovengronds is beperkt. Bovengronds komt ruimte vrij voor andere doeleinden.

Lange historie

Helsinki heeft een lange historie van ondergronds bouwen. De stad kent nu al meer dan vierhonderd ondergrondse bouwwerken, zestig kilometer tunnels voor technisch onderhoud en tweehonderd kilometer multifunctionele leidingentunnels voor verwarming, koeling, elektriciteit en water. De watervoorziening van de stad is gegarandeerd door middel van een honderd kilometer lange ondergrondse tunnel die in de periode 1972-1982 werd gerealiseerd tussen Lake Päijanne en Helsinki.

Naast voor de hand liggende toepassingen als tunnels, parkeergarages en multifunctionele leidingentunnels voor onder andere stadsverwarming kent Helsinki ook tal van andere toepassingen, zoals muziekcentrum en een zwembad. Ook het bedrijfsleven gaat ondergronds, onder andere met opslag of het eerder genoemde ondergrondse datacenter.

In het masterplan is rekening gehouden met tweehonderd reserveringen voor ondergronds gebruik en nog eens veertig reserveringen zonder vooraf bepaalde bestemming. De gemiddelde oppervlakte van die reservering is dertig hectare, optellend tot een totaal van veertien honderd hectare, ofwel 6,4% van de oppervlakte van Helsinki. In 2011 werd berekend dat er voor elke honderd vierkante meter bovengrondse ruimte een vierkante meter ondergrondse ruimte werd benut. De huidige reserveringen vertegenwoordigen dus nog een enorm ondergronds potentieel.

Bovengrondse kwaliteit

Uitgangspunt is dat wat niet bovengronds hoeft, net zo goed ondergronds kan. Burgemeester Jussi Pajunen daarover in een documentaire van CNN: “Functies die niet gezien hoeven te worden, stoppen we onder de grond. Het is relatief goedkoop, dus waarom zou je er geen gebruik van maken.” De kwaliteit van de bovengrondse ruimte blijkt in veel gevallen de belangrijkste drijfveer. Ilkka Vähäaho: “Niet-Finse deskundigen beweren wel dat de gunstige eigenschappen van het bedrockgesteente en de zeer strenge winterklimatologische omstandigheden de belangrijkste drijfveren voor deze ontwikkeling zijn geweest. Maar er zijn belangrijker argumenten. Finnen hebben een sterke behoefte aan open ruimten, zelfs in de stadscentra, en Helsinki is klein. Het is qua inwoners de grootste stad van Finland, maar behoort qua oppervlakte tot de kleinste.”

Zero-land-use-thinking

Helsinki kent al sinds de jaren tachtig van de vorige eeuw een toewijzingsbeleid voor ondergronds ruimtegebruik. Begin deze eeuw ontstond het idee voor een integraal ondergronds masterplan. De eerste voorbereidingen startten in 2004. De gemeenteraad van Helsinki keurde het masterplan in december 2010 goed. Ilkka Vähäaho noemt het een voorbeeld van ‘zero-land-use-thinking’. Met andere woorden, het uitgangspunt dat nieuwe functies in de stad niet tot extra bovengronds ruimtebeslag mogen leiden.

Hij illustreert dat met een doorsnede van het Katri Vala Park (zie figuur hiernaast). Daar werden sinds de jaren vijftig ondergronds achtereenvolgens opslagruimten, een multifunctionele leidingentunnel, een tunnel voor gezuiverd afvalwater en een warmtepompstation gerealiseerd. In het masterplan is onder dezelfde locatie ook nog ruimte gereserveerd voor toekomstig ondergronds gebruik. Het park is in al die tijd onaangetast gebleven.

 

 

Geotechniek voor Ondergrondse Ruimteontwikkeling

Voor het in kaart brengen van geschikte locaties voor toekomstig ondergronds gebruik heeft de geotechnische dienst van Ilkka Vähäaho uitgebreid onderzoek gedaan. Er is onderzoek gedaan naar locaties waar de mogelijk grote aaneengesloten ruimten kunnen worden gerealiseerd. Daarvoor werd een model ontwikkeld op basis van een standaardruimte van 12x50x150 meter (hxbxl). Met behulp van (hoogte)kaarten en boringen zijn de reeds benutte ondergrond en zwakke zones in kaart gebracht.

Het bedrockgesteente ligt in Helsinki niet ver onder het maaiveld. Dat betekent dat er veel goede, veilige locaties zijn voor aanleg van ondergrondse bouwwerken en installaties. Het onderzoek maakte zichtbaar dat er buiten het centrum vijfenvijftig locaties zijn waar in de buurt van verkeersknooppunten redelijk grootschalige ondergrondse voorzieningen gerealiseerd kunnen worden. Deze plekken zijn gemarkeerd als mogelijke toekomstige toegangen tot ondergrondse bouwwerken en infrastructuur.

Ambities
In Finland wordt ook buiten de hoofdstad gekeken naar de mogelijkheden die de ondergrond biedt. Ilkka Vähäaho noemt de steden Tampere, de derde stad van het land, en Oulu als voorbeelden. En er wordt serieus gekeken naar de haalbaarheid van een tachtig kilometer lange onderzeese tunnel tussen Helsinki en de Estse hoofdstad Tallinn, die dan samen zouden moeten uitgroeien tot de tweelingstad ‘Talsinki’, met de potentie om te gaan concurreren met steden als Stockholm en Kopenhagen.

Dit was de Onderbreking Verbinden

Bekijk een ander koffietafelboek: